Extremal and approximative properties of simple partial fractions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 9-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In approximation theory, logarithmic derivatives of complex polynomials are called simple partial fractions (SPF) as suggested by E.P. Dolzhenko. Many solved and unsolved extremal problems related to SPF are traced back to works of G. Boole, A.J. Macintyre, W.H.J. Fuchs, J.M. Marstrand, E.A. Gorin, A.A. Gonchar, E.P. Dolzhenko. At present, many authors systematically develop methods for approximation and interpolation by SPF and several their modifications. Simultaneously, related problems, being of independent interest, arise for SPF: inequalities of different metrics, estimation of derivatives, separation of singularities, etc. We systematize some of these problems which are known to us in Introduction of this survey. In the main part, we formulate principal results and outline methods to prove them if possible.
Keywords: Gorin–Gelfond problems, amplitude and frequency operators, best approximations, rational functions, approximation
Mots-clés : simple partial fractions, alternance, interpolation, extrapolation.
@article{IVM_2018_12_a1,
     author = {V. I. Danchenko and M. A. Komarov and P. V. Chunaev},
     title = {Extremal and approximative properties of simple partial fractions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {9--49},
     publisher = {mathdoc},
     number = {12},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_12_a1/}
}
TY  - JOUR
AU  - V. I. Danchenko
AU  - M. A. Komarov
AU  - P. V. Chunaev
TI  - Extremal and approximative properties of simple partial fractions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 9
EP  - 49
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_12_a1/
LA  - ru
ID  - IVM_2018_12_a1
ER  - 
%0 Journal Article
%A V. I. Danchenko
%A M. A. Komarov
%A P. V. Chunaev
%T Extremal and approximative properties of simple partial fractions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 9-49
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_12_a1/
%G ru
%F IVM_2018_12_a1
V. I. Danchenko; M. A. Komarov; P. V. Chunaev. Extremal and approximative properties of simple partial fractions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 9-49. http://geodesic.mathdoc.fr/item/IVM_2018_12_a1/

[1] Boole G., “On the comparison of transcendents, with certain applications to the theory of definite integrals”, Philos. Trans. R. Soc., 147 (1857), 745–803 | DOI

[2] Macintyre A. J., Fuchs W. H. J., “Inequalities for the logarithmic derivatives of a polynomial”, J. London Math. Soc., 15:3 (1940), 162–168 | DOI | MR

[3] Marstrand J. M., “The distribution of the logarithmic derivative of a polynomial”, J. London Math. Soc., 38 (1963), 495–500 | DOI | MR | Zbl

[4] Gonchar A. A., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami”, DAN SSSR, 100:2 (1955), 205–208 | Zbl

[5] Gonchar A. A., “Obratnye teoremy o nailuchshikh priblizheniyakh na zamknutykh mnozhestvakh”, DAN SSSR, 128:1 (1959), 25–28 | Zbl

[6] Gonchar A. A., “Obratnye teoremy o nailuchshikh priblizheniyakh ratsionalnymi funktsiyami”, Izv. AN SSSR. Ser. matem., 25:3 (1961), 347–356 | Zbl

[7] Dolzhenko E. P., “Skorost priblizheniya ratsionalnymi drobyami i svoistva funktsii”, Matem. sb., 56:4 (1962), 403–432 | Zbl

[8] Dolzhenko E. P., “Ratsionalnye approksimatsii i granichye svoistva analiticheskikh funktsii”, Matem. sb., 69:111 (1966), 497–524 | Zbl

[9] Dolzhenko E. P., “O zavisimosti granichnykh svoistv analiticheskoi funktsii ot skorosti ee priblizheniya ratsionalnymi funktsiyami”, Matem. sb., 103:145 (1977), 131–142 | Zbl

[10] Dolzhenko E. P., “Nekotorye tochnye integralnye otsenki proizvodnykh ratsionalnykh i algebraicheskikh funktsii. Prilozheniya”, Anal. Math., 4:4 (1978), 247–268 | DOI | MR

[11] Cartan H., “Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications”, Ann. Sci. École Norm. Sup., 45:3 (1928), 255–346 | DOI | MR | Zbl

[12] Anderson J. M., Eiderman V. Ya., “Cauchy transforms of point masses: the logarithmic derivative of polynomials”, Ann. Math., 163:3 (2006), 1057–1076 | DOI | MR | Zbl

[13] Anderson Dzh.M., Eiderman V. Ya., “Otsenki preobrazovaniya Koshi tochechnykh mass (logarifmicheskoi proizvodnoi mnogochlena)”, Dokl. RAN, 401:5 (2005), 583–586 | Zbl

[14] Govorov N. V., Lapenko Yu. P., “Otsenki snizu modulya logarifmicheskoi proizvodnoi mnogochlena”, Matem. zametki, 23:4 (1978), 527–535 | Zbl

[15] Eiderman V. Ya., “Otsenki kartanovskogo tipa dlya potentsialov s yadrom Koshi i s deistvitelnymi yadrami”, Matem. sb., 198:8 (2007), 115–160 | DOI | Zbl

[16] Gorin E. A., “Chastichno gipoellipticheskie differentsialnye uravneniya v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Sib. matem. zhurn., 3:4 (1962), 500–526 | Zbl

[17] Nikolaev E. G., “Geometricheskoe svoistvo kornei mnogochlenov”, Vestn. MGU. Ser. 1. Matem., mekhan., 5 (1965), 23–26 | Zbl

[18] Gelfond A. O., “Ob otsenke mnimykh chastei kornei mnogochlenov s ogranichennymi proizvodnymi ot logarifmov na deistvitelnoi osi”, Matem. sb., 71 (113):3 (1966), 289–296 | Zbl

[19] Katsnelson V. E., “O nekotorykh operatorakh, deistvuyuschikh v prostranstvakh, porozhdennykh funktsiyami $\frac{1}{z-z_k}$”, Teoriya funktsii, funkts. analiz i ikh prilozh., 4 (1967), 58–66

[20] Danchenko V. I., “Otsenki rasstoyanii ot polyusov logarifmicheskikh proizvodnykh mnogochlenov do pryamykh i okruzhnostei”, Matem. sb., 185:8 (1994), 63–80 | Zbl

[21] Borodin P. A., “Otsenki rasstoyanii do pryamykh i luchei ot polyusov naiprosteishikh drobei, ogranichennykh po norme $L_p$ na etikh mnozhestvakh”, Matem. zametki, 82:6 (2007), 803–810 | DOI | Zbl

[22] Danchenko V. I., Metricheskie svoistva meromorfnykh funktsii, Diss. $\dotsc$ dokt. fiz.-matem. nauk, MGU, M., 1999

[23] Danchenko V. I., “Otsenki proizvodnykh naiprosteishikh drobei i drugie voprosy”, Matem. sb., 197:4 (2006), 33–52 | DOI | Zbl

[24] Danchenko D. Ya., Nekotorye voprosy approksimatsii i interpolyatsii ratsionalnymi funktsiyami. Prilozhenie k uravneniyam ellipticheskogo tipa, Diss. $\dots$ kand. fiz.-matem. nauk, Vladimirsk. gos. pedagogicheskii un-t, 2001

[25] Kosukhin O. N., “Ob otsenkakh rasstoyanii ot polyusov naiprosteishikh drobei do kompaktov”, Mater. Mezhdunarodn. nauchn. konf., posv. 105-letiyu akad. S. M. Nikolskogo (MGU im. M.V. Lomonosova, 17–19 maya g.), MGU, M., 2010, 25

[26] Chunaev P., “Least deviation of logarithmic derivatives of algebraic polynomials from zero”, J. App. Theory, 185 (2014), 98–106 | DOI | MR | Zbl

[27] Kondakova E. N., Interpolyatsiya i approksimatsiya naiprosteishimi drobyami, Avtoref. dis. $\dotsc$ kand. fiz.-matem. nauk, Saratov, 2012

[28] Danchenko V. I., Chunaev P. V., “Ob otsenke mnimykh chastei polyusov naiprosteishikh drobei s normirovannoi proizvodnoi na deistvitelnoi osi”, Sovremen. metody teorii funktsii i smezhnye probl., Mater. Voronezhsk. zimnei matem. shkoly, 2013, 78

[29] Danchenko V. I., “O skhodimosti naiprosteishikh drobei v $L_p(\mathbb{R})$”, Matem. sb., 201:7 (2010), 53–66 | DOI | Zbl

[30] Kayumov I. R., “Skhodimost ryadov naiprosteishikh drobei v $L_p(\mathbb{ R})$”, Matem. sb., 202:10 (2011), 87–98 | DOI | Zbl

[31] Kayumov I. R., “Neobkhodimoe uslovie skhodimosti naiprosteishikh drobei v $L_p(\mathbb{R})$”, Matem. zametki, 92:1 (2012), 149–152 | DOI | Zbl

[32] Kayumov I. R., “Integralnye otsenki naiprosteishikh drobei”, Izv. vuzov. Matem., 2012, no. 4, 33–45

[33] Kayumova A. V., “Skhodimost ryadov prostykh drobei v $L_p$”, Uchen. zap. Kazan. gos. un-ta. Ser. Fiz.-matem. nauki, 154, no. 1, 2012, 208–213 | MR

[34] Protasov V. Yu., “Priblizheniya naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN. Ser. matem., 73:2 (2009), 123–140 | DOI | Zbl

[35] Bari N. K., “Obobschenie neravenstva A. A. Markova i S. N. Bernshteina”, Izv. AN SSSR. Ser. matem., 18 (1954), 159–176 | Zbl

[36] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38, 1951, 244–278

[37] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[38] Chunaev P., Danchenko V., Sharp inequalities of Jackson–Nikolskii type for rational functions, 2016, arXiv: 1611.03485

[39] Danchenko V. I., Dodonov A. E., “Otsenki $L_p$-norm naiprosteishikh drobei”, Izv. vuzov. Matem., 2014, no. 6, 9–19

[40] Dodonov A. E., “Neravenstva raznykh metrik dlya naiprosteishikh drobei”, Mezhdunarodn. konf. po matem. teorii upravleniya i mekhan., Tez. dokl. (g. Suzdal, 7–11 iyulya 2017), 65

[41] Danchenko V. I., Semin L. A., “Tochnye kvadraturnye formuly i neravenstva raznykh metrik dlya ratsionalnykh funktsii”, Sib. matem. zhurn., 57:2 (2016), 282–296 | Zbl

[42] Danchenko V. I., Danchenko D. Ya., “Nikolskii type inequalities for simple partial fractions”, Kompleksnyi analiz i ego prilozh., Mater. VII Petrozavodsk. mezhdunarodn. konf. (Petrozavodsk, 29 iyunya–5 iyulya 2014 g.), 2014, 33–37

[43] Danchenko V. I., Chunaev P. V., “Approximation by simple partial fractions and their generalizations”, J. Math. Sci., 176:6 (2011), 844–859 | DOI | MR | Zbl

[44] Danchenko V. I., Danchenko D. Ya., “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozh. i smezhnye vopr., Mater. shkoly-konf., posv. 130-letiyu D. F. Egorova (Kazan, 1999), 1999, 74–77

[45] Danchenko V. I., Danchenko D. Ya., “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | DOI

[46] Kosukhin O. N., O nekotorykh netraditsionnykh metodakh priblizheniya, svyazannykh s kompleksnymi polinomami, Diss. $\dotsc$ kand. fiz.-matem. nauk, MGU, M., 2005

[47] Danchenko V. I., Kondakova E. N., “Chebyshevskii alternans pri approksimatsii konstant naiprosteishimi drobyami”, Tr. MIAN, 270, 2010, 86–96 | Zbl

[48] Danchenko V. I., Kondakova E. N., “Kriterii vozniknoveniya osobykh uzlov pri interpolyatsii naiprosteishimi drobyami”, Tr. MIAN, 278, 2012, 49–58 | MR | Zbl

[49] Kondakova E. N., “Interpolyatsiya naiprosteishimi drobyami”, Izv. Sarat. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 9:2 (2009), 30–37 | MR

[50] Komarov M. A., “Kriterii razreshimosti zadachi kratnoi interpolyatsii posredstvom naiprosteishikh drobei”, Sib. matem. zhurn., 55:4 (2014), 750–763 | MR | Zbl

[51] Kosukhin O. N., “Ob approksimatsionnykh svoistvakh naiprosteishikh drobei”, Vestn. MGU. Ser. 1. Matem., mekhan., 4 (2001), 54–58 | MR

[52] Chui C. K., “On approximation in the Bers spaces”, Proc. Amer. Math. Soc., 40 (1973), 438–442 | DOI | MR | Zbl

[53] Chui C. K., Shen X. C., “Order of approximation by electrostatic fields due to electrons”, Constr. Approx., 1:1 (1985), 121–135 | DOI | MR | Zbl

[54] Korevaar J., “Asymptotically neutral distributions of electrons and polynomial approximation”, Ann. Math. (2), 80:2 (1964), 403–410 | DOI | MR | Zbl

[55] Korevaar J., “Limits of polynomials whose zeros lie in a given set”, Proc. Sympos. Pure Math. Amer. Math. Soc., 11 (1968), 261–272 | DOI | MR | Zbl

[56] Borodin P. A., “Priblizhenie naiprosteishimi drobyami s ogranicheniem na polyusy”, Matem. sb., 203:11 (2012), 23–40 | DOI | Zbl

[57] Borodin P. A., “Priblizhenie naiprosteishimi drobyami s ogranicheniem na polyusy. II”, Matem. sb., 207:3 (2016), 19–30 | DOI | Zbl

[58] Uolsh D. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, M., 1961

[59] Demidovich B. P., Maron I. A., Osnovy vychislitelnoi matematiki, Fizmatlit, M., 1960

[60] Komarov M. A., “Approksimatsiya posredstvom drobno-lineinykh preobrazovanii naiprosteishikh drobei i ikh raznostei”, Izv. vuzov. Matem., 2018, no. 3, 29–40

[61] Danchenko V. I., “Ob approksimativnykh svoistvakh summ vida $\sum\limits_k\lambda_kh(\lambda_k z)$”, Matem. zametki, 83:5 (2008), 643–649 | DOI | Zbl

[62] Komarov M. A., “Kriterii nailuchshego priblizheniya konstant naiprosteishimi drobyami”, Matem. zametki, 93:2 (2013), 209–215 | DOI | Zbl

[63] Komarov M. A., “Skorost nailuchshego priblizheniya konstant naiprosteishimi drobyami i alternans”, Matem. zametki, 97:5 (2015), 718–732 | DOI | Zbl

[64] Komarov M. A., “Uniqueness of a simple partial fraction of best approximation”, J. Math. Sci., 175:3 (2011), 284–308 | DOI | MR | Zbl

[65] Komarov M. A., “O needinstvennosti naiprosteishei drobi nailuchshego ravnomernogo priblizheniya”, Izv. vuzov. Matem., 2013, no. 9, 28–37

[66] Komarov M. A., “Kriterii nailuchshego ravnomernogo priblizheniya naiprosteishimi drobyami v terminakh alternansa”, Izv. RAN. Ser. matem., 79:3 (2015), 3–22 | DOI

[67] Komarov M. A., “On the analog of Chebyshev theorem for simple partial fractions”, Kompleksnyi analiz i ego prilozh., Mater. VII Petrozavodsk. mezhdunarodn. konf. (Petrozavodsk, 29 iyunya–5 iyulya 2014 g.), 2014, 65–69 | MR

[68] Novak Ya. V., Aproksimatsiini ta interpolyatsiini vlastivosti naiprostishikh drobiv, Diss. $\dotsc$ kand. fiz.-matem. nauk, IM NAN Ukrainy, Kiev, 2009

[69] Komarov M. A., “Alternance and best uniform approximation of odd functions by simple partial fractions”, Kompleksnyi analiz i ego prilozh., Mater. VIII Petrozavodsk. mezhdunar. konf. (Petrozavodsk, 3–9 iyulya 2016 g.), 2016, 41–46

[70] Komarov M. A., “Kriterii nailuchshego ravnomernogo priblizheniya naiprosteishimi drobyami v terminakh alternansa. II”, Izv. RAN. Ser. matem., 81:3 (2017), 109–133 | DOI | Zbl

[71] Borodin P. A., Kosukhin O. N., “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. MGU. Ser. 1. Matem., mekhan., 1 (2005), 3–8 | Zbl

[72] Borodin P. A., “Priblizhenie naiprosteishimi drobyami na poluosi”, Matem. sb., 200:8 (2009), 25–44 | DOI | Zbl

[73] Fryantsev A. V., “On numerical approximation of differential polynomials”, J. Math. Sci., 157:3 (2009), 395–399 | DOI | MR | Zbl

[74] Fryantsev A. V., “O chislennoi approksimatsii differentsialnykh polinomov”, Izv. Saratovsk. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 7:2 (2007), 39–43 | Zbl

[75] Fryantsev A. V., “O polinomialnykh resheniyakh lineinykh differentsialnykh uravnenii”, UMN, 63:3 (2008), 149–150 | DOI | Zbl

[76] Chunaev P. V., “Ob odnom netraditsionnom metode approksimatsii”, Tr. MIAN, 270, 2010, 281–287 | Zbl

[77] Chunaev P. V., “Ob ekstrapolyatsii analiticheskikh funktsii summami vida $\sum\limits_k \lambda_k h (\lambda_k z)$”, Matem. zametki, 92:5 (2012), 794–797 | DOI | MR | Zbl

[78] Danchenko V. I., Chunaev P. V., “Approximation by amplitude and frequency sums”, Joint CRM-ISAAC Conf. on Fourier Anal. and App. Theory, Abstracts (Bellaterra, 2013), 2013, 12 | MR

[79] Chunaev P., Danchenko V., “Approximation by amplitude and frequency operators”, J. Approx Theory, 207 (2016), 1–30 | DOI | MR

[80] Danchenko V. I., Chunaev P. V., “Ob approksimatsii posredstvom chastotno-amplitudnykh summ”, Mezhdunarodn. Kazansk. letnyaya shkola-konf. (Kazan, 22–28 avgusta 2013 g.), Teoriya funktsii, ee prilozh. i smezhnye vopr., 46, 2013, 174–175

[81] Kung J. P.S., “Canonical forms of binary forms: Variations on a theme of Sylvester”, Invariant theory and tableaux (Minneapolis, MN, 1988), IMA V. Math. Appl., 19, 1990, 46–58 | MR | Zbl

[82] Lyubich Y. I., “Gauss type complex quadrature formulae, power moment problem and elliptic curves”, Matem. fiz., anal., geom., 9:2 (2002), 128–145 | MR | Zbl

[83] Lyubich Y. I., “The Sylvester–Ramanujan system of equations and the complex power moment problem”, Ramanujan J., 8 (2004), 23–45 | DOI | MR | Zbl

[84] Prony R., “Sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l'eau et de la vapeur de l'alkool, à différentes températures”, J. de l'Ecole Polytech., 2:4 (1795), 28–35

[85] Ramanujan S., “Note on a set of simultaneous equations”, J. Indian Math. Soc., 4 (1912), 94–96 | Zbl

[86] Sylvester J. J., “On a remarkable discovery in the theory of canonical forms and of hyperdeterminants”, Phil. Magazine, 2 (1851), 391–410

[87] Danchenko V. I., Vasilchenkova D. G., Extraction of harmonics from trigonometric polynomials by amplitude and phase operators, 2016, arXiv: 1606.08716

[88] Vasilchenkova D. G., Danchenko V. I., “Extraction of harmonics from trigonometric polynomials by amplitude and phase transformation”, Kompleksnyi analiz i ego prilozh., Mater. VIII Petrozavodsk. mezhdunarodn. konf. (Petrozavodsk, 3–9 iyulya 2016 g.), 2016, 93–95

[89] Vasilchenkova D. G., Danchenko V. I., “Filtratsiya trigonometricheskikh mnogochlenov amplitudno-fazovymi operatorami”, Mezhdunarodn. konf. po differents. uravneniyam i dinamicheskim sistemam, Tez. dokl. (Suzdal, 8–12 iyulya 2016 g.), 2016, 40–41

[90] Vasilchenkova D. G., Danchenko V. I., “Otsenki garmonik trigonometricheskikh mnogochlenov”, Mezhdunarodn. konf. po matem. teorii upravleniya i mekhanike, Tez. dokl. (Suzdal, 7–11 iyulya 2017 g.), 2017, 48–49

[91] Belov A. S., “Nekotorye svoistva i otsenki dlya neotritsatelnykh trigonometricheskikh polinomov”, Izv. RAN. Ser. matem., 67:4 (2003), 3–20 | DOI | MR | Zbl

[92] Belov A. S., Konyagin S. V., “Ob otsenke svobodnogo chlena neotritsatelnogo trigonometricheskogo polinoma s tselymi koeffitsientami”, Izv. RAN. Ser. matem., 60:6 (1996), 31–90 | DOI | MR | Zbl

[93] Danchenko V. I., Danchenko D. Ya., “Otsenki summ dvukh garmonik trigonometricheskikh mnogochlenov”, Mezhdunarodn. konf. po matem. teorii upravleniya i mekhan., Tez. dokl. (Suzdal, 7–11 iyulya 2017 g.), 2017, 62–63

[94] Danchenko V. I., Danchenko D. Ya., “Vydelenie par garmonik iz trigonometricheskikh mnogochlenov amplitudno-fazovym operatorom”, Teoriya funktsii, ee prilozh. i smezhnye vopr., XIII Mezhdunarodn. Kazansk. letnyaya shkola-konf. (Kazan, 21–27 avgusta 2017 g.), 2017, 143–145

[95] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984

[96] Kusis P., Vvedenie v teoriyu prostranstv $H^{p}$, Mir, M., 1984

[97] Dodonov A. E., “On convergence of series of simple partial fractions in $L_p(\mathbb{R})$”, J. Math. Sci., 210:5 (2015), 648–653 | DOI | MR | Zbl

[98] Danchenko V. I., Otsenki otkloneniya ot deistvitelnoi osi nulei mnogochlena s normirovannoi logarifmicheskoi proizvodnoi, Dep. VINITI, No 2990-91, 1991

[99] Danchenko V. I., Otsenki mnimykh chastei polyusov logarifmicheskikh proizvodnykh mnogochlenov, Dep. VINITI, No 1695-92, 1992

[100] Danchenko V. I., “O skorosti priblizheniya k deistvitelnoi osi polyusov normirovannykh logarifmicheskikh proizvodnykh polinomov”, Dokl. RAN, 330:1 (1993), 15–16 | Zbl

[101] Warschawski S. E., “On differentiability at the boundary in conformal mapping”, Proc. Amer. Math. Soc., 12:4 (1961), 615–620 | DOI | MR

[102] Zolotarev E. I., Polnoe sobranie sochinenii, v. 2, Fiz.-matem. in-t im. V. A. Steklova AN SSSR, Izd-vo AN SSSR, L., 1932

[103] Gonchar A. A., “O zadachakh E. I. Zolotareva, svyazannykh s ratsionalnymi funktsiyami”, Matem. sb., 78 (120):4 (1969), 640–654 | Zbl

[104] Danchenko V. I., “Integralnye otsenki dlin linii urovnya ratsionalnykh funktsii i zadacha E. I. Zolotareva”, Matem. zametki, 94:3 (2013), 331–337 | DOI | Zbl

[105] Bulanov A. P., “Asimptotika dlya naimenshikh uklonenii funktsii $\mathrm{sign}\,x$ ot ratsionalnykh funktsii”, Matem. sb., 96 (138):2 (1975), 171–188 | MR | Zbl

[106] Danchenko V. I., “O razdelenii osobennostei meromorfnykh funktsii”, Matem. sb., 125 (167):2(10) (1984), 181–198

[107] Gonchar A. A., Grigoryan L. D., “Ob otsenkakh norm golomorfnoi sostavlyayuschei meromorfnoi funktsii”, Matem. sb., 99 (1976), 634–638 | Zbl

[108] Gonchar A. A., Grigoryan L. D., “Ob otsenke komponent ogranichennykh analiticheskikh funktsii”, Matem. sb., 132 (1987), 299–303 | Zbl

[109] Grigoryan L. D., “Otsenka normy golomorfnykh sostavlyayuschikh meromorfnykh funktsii v oblastyakh s gladkoi granitsei”, Matem. sb., 100 (142):1(5) (1976), 156–164 | MR | Zbl

[110] Novak Ya. V., “O nailuchshem lokalnom priblizhenii naiprosteishimi drobyami”, Matem. zametki, 84:6 (2008), 882–887 | DOI | Zbl

[111] Kondakova E. N., “Osobye sluchai interpolyatsii posredstvom naiprosteishikh drobei”, Mezhdunarodn. konf. po differents. uravneniyam i dinamicheskim sistemam, Tez. dokl. (Suzdal, 2010 g.), 2010, 105–106

[112] Komarov M. A., “Interpolation of rational functions by simple partial fractions”, J. Math. Sci., 181:5 (2012), 600–612 | DOI | MR | Zbl

[113] Kurosh A. G., Kurs vysshei algebry, Fizmatlit, M., 1963

[114] Novak Ya. V., “Kriterii isnuvannya neperervnikh pokhidnikh u funktsii z klasu $L_p$ na vidrizku v terminakh lokalnikh nablizhen naiprostishimi drobami”, Dopovidi NAN Ukraïni, 5 (2009), 36–40

[115] Morozov A. N., “Ob odnom opisanii prostranstv differentsiruemykh funktsii”, Matem. zametki, 70:5 (2001), 758–768 | DOI | MR | Zbl

[116] Komarov M. A., “Examples related to best approximation by simple partial fractions”, J. Math. Sci., 184:4 (2012), 509–523 | DOI | MR | Zbl

[117] Komarov M. A., “Sufficient condition for the best uniform approximation by simple partial fractions”, J. Math. Sci., 189:3 (2013), 482–489 | DOI | MR | Zbl

[118] Danchenko V. I., Danchenko D. Ya., “O edinstvennosti naiprosteishei drobi nailuchshego priblizheniya”, Mezhdunarodn. konf. po differents. uravneniyam i dinamicheskim sistemam, Tez. dokl. (Suzdal, 2010 g.), 2010, 71–72

[119] Novak Ya. V., “Kriterii tipu Kolmogorova dlya naiprostishikh drobiv”, Zbirnik prats In-tu matem. NAN Ukraïni, 7:2 (2010), 385–392 | Zbl

[120] Kolmogorov A. N., “Zamechanie po povodu mnogochlenov P. L. Chebysheva, naimenie uklonyayuschikhsya ot zadanoi funktsii”, UMN, 3:1 (1948), 216–221 | MR | Zbl

[121] Komarov M. A., “An analog of the Haar condition for simple partial fractions”, J. Math. Sci., 208:2 (2015), 174–180 | DOI | MR | Zbl

[122] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965

[123] Mink Kh., Permanenty, Mir, M., 1982

[124] Danchenko V. I., Dodonov A. E., “Estimates for exponential sums. Applications”, J. Math. Sci., 188:3 (2013), 197–206 | DOI | MR | Zbl

[125] Krylov V. I., Priblizhennoe vychislenie integralov, Nauka, M., 1967

[126] Ash J. M., Janson S., Jones R. L., “Optimal numerical differentiation using $N$ function evaluations”, Calcolo, 21:2 (1984), 151–169 | DOI | MR | Zbl

[127] Lyness J. N., “Differentiation formulas for analytic functions”, Math. Comp., 22 (1968), 352–362 | DOI | MR | Zbl

[128] Lyness J. N., Moler C. B., “Numerical differentiation of analytic functions”, SIAM J. Numer. Anal., 4 (1967), 202–210 | DOI | MR | Zbl

[129] Salzer H. E., “Optimal points for numerical differentiation”, Num. Math., 2:1 (1960), 214–227 | DOI | MR | Zbl

[130] Salzer H. E., “Formulas for best extrapolation”, Num. Math., 18 (1971), 144–153 | DOI | MR | Zbl

[131] Nigmatyanova Yu.M., “Numerical analysis of the method of differentiation by means of real $h$-sums”, J. Math. Sci., 224:5 (2017), 735–743 | DOI | MR | Zbl