On distribution of countable models of disjoint unions of Ehrenfeucht theories
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe Rudin–Keisler preorders and distribution functions of numbers of limit models for disjoint unions of Ehrenfeucht theories. We also find decomposition formulas for these distributions.
Keywords: disjoint union of theories, Ehrenfeucht theory, distribution of countable models
Mots-clés : decomposition formula.
@article{IVM_2018_11_a8,
     author = {S. V. Sudoplatov},
     title = {On distribution of countable models of disjoint unions of {Ehrenfeucht} theories},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--91},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_11_a8/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - On distribution of countable models of disjoint unions of Ehrenfeucht theories
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 86
EP  - 91
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_11_a8/
LA  - ru
ID  - IVM_2018_11_a8
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T On distribution of countable models of disjoint unions of Ehrenfeucht theories
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 86-91
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_11_a8/
%G ru
%F IVM_2018_11_a8
S. V. Sudoplatov. On distribution of countable models of disjoint unions of Ehrenfeucht theories. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2018_11_a8/

[1] Kulpeshov B. Sh., Sudoplatov S. V., Distributions of countable models of quite $o$-minimal Ehrenfeucht theories, 2018, arXiv: 1802.08078v1 [math.LO]

[2] Sudoplatov S. V., Klassifikatsiya schetnykh modelei polnykh teorii, v. 1, Izd-vo NGTU, Novosibirsk, 2018

[3] Sudoplatov S. V., Klassifikatsiya schetnykh modelei polnykh teorii, v. 2, Izd-vo NGTU, Novosibirsk, 2018

[4] Millar T. S., “Decidable Ehrenfeucht theories”, Proc. Sympos. Pure Math., 42 (1985), 311–321 | DOI | MR | Zbl

[5] Benda M., “Remarks on countable models”, Fund. Math., 81:2 (1974), 107–119 | DOI | MR | Zbl

[6] Lascar D., “Ordre de Rudin–Keisler et poids dans les theories stables”, Z. Math. Logic Grundlagen Math., 28 (1982), 413–430 | DOI | MR | Zbl

[7] Sudoplatov S. V., “Polnye teorii s konechnym chislom schetnykh modelei. I”, Algebra i logika, 28:1 (2004), 110–124

[8] Sudoplatov S. V., “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sci., 169:5 (2010), 680–695 | DOI | MR | Zbl

[9] Woodrow R. E., Theories with a finite number of countable models and a small language, Ph. D. Thesis, Simon Fraser University, 1976

[10] Sudoplatov S. V., Ovchinnikova E. V., Diskretnaya matematika: uchebnik i praktikum, Yurait, M., 2018

[11] Sudoplatov S. V., “Nesuschestvennye sovmescheniya malykh teorii”, Izv. Irkutsk. gos. un-ta. Ser. “Matem.”, 2:2 (2009), 158–169