Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_11_a8, author = {S. V. Sudoplatov}, title = {On distribution of countable models of disjoint unions of {Ehrenfeucht} theories}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {86--91}, publisher = {mathdoc}, number = {11}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_11_a8/} }
S. V. Sudoplatov. On distribution of countable models of disjoint unions of Ehrenfeucht theories. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2018_11_a8/
[1] Kulpeshov B. Sh., Sudoplatov S. V., Distributions of countable models of quite $o$-minimal Ehrenfeucht theories, 2018, arXiv: 1802.08078v1 [math.LO]
[2] Sudoplatov S. V., Klassifikatsiya schetnykh modelei polnykh teorii, v. 1, Izd-vo NGTU, Novosibirsk, 2018
[3] Sudoplatov S. V., Klassifikatsiya schetnykh modelei polnykh teorii, v. 2, Izd-vo NGTU, Novosibirsk, 2018
[4] Millar T. S., “Decidable Ehrenfeucht theories”, Proc. Sympos. Pure Math., 42 (1985), 311–321 | DOI | MR | Zbl
[5] Benda M., “Remarks on countable models”, Fund. Math., 81:2 (1974), 107–119 | DOI | MR | Zbl
[6] Lascar D., “Ordre de Rudin–Keisler et poids dans les theories stables”, Z. Math. Logic Grundlagen Math., 28 (1982), 413–430 | DOI | MR | Zbl
[7] Sudoplatov S. V., “Polnye teorii s konechnym chislom schetnykh modelei. I”, Algebra i logika, 28:1 (2004), 110–124
[8] Sudoplatov S. V., “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sci., 169:5 (2010), 680–695 | DOI | MR | Zbl
[9] Woodrow R. E., Theories with a finite number of countable models and a small language, Ph. D. Thesis, Simon Fraser University, 1976
[10] Sudoplatov S. V., Ovchinnikova E. V., Diskretnaya matematika: uchebnik i praktikum, Yurait, M., 2018
[11] Sudoplatov S. V., “Nesuschestvennye sovmescheniya malykh teorii”, Izv. Irkutsk. gos. un-ta. Ser. “Matem.”, 2:2 (2009), 158–169