On distribution of countable models of disjoint unions of Ehrenfeucht theories
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 86-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe Rudin–Keisler preorders and distribution functions of numbers of limit models for disjoint unions of Ehrenfeucht theories. We also find decomposition formulas for these distributions.
Keywords: disjoint union of theories, Ehrenfeucht theory, distribution of countable models
Mots-clés : decomposition formula.
@article{IVM_2018_11_a8,
     author = {S. V. Sudoplatov},
     title = {On distribution of countable models of disjoint unions of {Ehrenfeucht} theories},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--91},
     year = {2018},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_11_a8/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - On distribution of countable models of disjoint unions of Ehrenfeucht theories
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 86
EP  - 91
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_11_a8/
LA  - ru
ID  - IVM_2018_11_a8
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T On distribution of countable models of disjoint unions of Ehrenfeucht theories
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 86-91
%N 11
%U http://geodesic.mathdoc.fr/item/IVM_2018_11_a8/
%G ru
%F IVM_2018_11_a8
S. V. Sudoplatov. On distribution of countable models of disjoint unions of Ehrenfeucht theories. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2018_11_a8/

[1] Kulpeshov B. Sh., Sudoplatov S. V., Distributions of countable models of quite $o$-minimal Ehrenfeucht theories, 2018, arXiv: 1802.08078v1 [math.LO]

[2] Sudoplatov S. V., Klassifikatsiya schetnykh modelei polnykh teorii, v. 1, Izd-vo NGTU, Novosibirsk, 2018

[3] Sudoplatov S. V., Klassifikatsiya schetnykh modelei polnykh teorii, v. 2, Izd-vo NGTU, Novosibirsk, 2018

[4] Millar T. S., “Decidable Ehrenfeucht theories”, Proc. Sympos. Pure Math., 42 (1985), 311–321 | DOI | MR | Zbl

[5] Benda M., “Remarks on countable models”, Fund. Math., 81:2 (1974), 107–119 | DOI | MR | Zbl

[6] Lascar D., “Ordre de Rudin–Keisler et poids dans les theories stables”, Z. Math. Logic Grundlagen Math., 28 (1982), 413–430 | DOI | MR | Zbl

[7] Sudoplatov S. V., “Polnye teorii s konechnym chislom schetnykh modelei. I”, Algebra i logika, 28:1 (2004), 110–124

[8] Sudoplatov S. V., “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sci., 169:5 (2010), 680–695 | DOI | MR | Zbl

[9] Woodrow R. E., Theories with a finite number of countable models and a small language, Ph. D. Thesis, Simon Fraser University, 1976

[10] Sudoplatov S. V., Ovchinnikova E. V., Diskretnaya matematika: uchebnik i praktikum, Yurait, M., 2018

[11] Sudoplatov S. V., “Nesuschestvennye sovmescheniya malykh teorii”, Izv. Irkutsk. gos. un-ta. Ser. “Matem.”, 2:2 (2009), 158–169