Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_11_a5, author = {A. V. Chernov}, title = {On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {60--74}, publisher = {mathdoc}, number = {11}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_11_a5/} }
TY - JOUR AU - A. V. Chernov TI - On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 60 EP - 74 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_11_a5/ LA - ru ID - IVM_2018_11_a5 ER -
%0 Journal Article %A A. V. Chernov %T On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 60-74 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2018_11_a5/ %G ru %F IVM_2018_11_a5
A. V. Chernov. On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 60-74. http://geodesic.mathdoc.fr/item/IVM_2018_11_a5/
[1] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2011, no. 3, 95–107
[2] Chernov A. V., “O totalnom sokhranenii razreshimosti upravlyaemogo uravneniya tipa Gammershteina s neizotonnym i nemazhoriruemym operatorom”, Izv. vuzov. Matem., 2017, no. 6, 83–94 | Zbl
[3] Sumin V. I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, v. I, NNGU, N. Novgorod, 1992
[4] Korpusov M. O., Sveshnikov A. G., “Razrushenie reshenii silno nelineinykh uravnenii psevdoparabolicheskogo tipa”, Sovremen. matem. i ee prilozh., 40 (2006), 3–138
[5] Sumin V. I., Chernov A. V., “Volterrovy funktsionalno-operatornye uravneniya v teorii optimizatsii raspredelennykh sistem”, Tr. Mezhdunar. konf. “Dinamika sistem i protsessy upravleniya”, posvyaschennoi 90-letiyu so dnya rozhd. akad. N. N. Krasovskogo (Ekaterinburg, Rossiya, 15–20 sentyabrya 2014 g.), IMM UrO RAN–URFU, Ekaterinburg, 2015, 293–300
[6] Gaevskii Kh., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978
[7] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2012, no. 3, 62–73
[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973
[9] Chen P. J., Gurtin M. E., “On a theory of heat conduction involving two temperatures”, Z. Angew. Math. Phys., 19:4 (1968), 614–627 | DOI | MR | Zbl
[10] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, PMM, 24:5 (1960), 852–864 | Zbl
[11] Barenblatt G. I., Garcia-Azorero J., De Pablo A., Vazquez J. L., “Mathematical model of the non-equilibrium water-oil displacement in porous strata”, Appl. Anal., 65:1–2 (1997), 19–45 | DOI | MR | Zbl
[12] Helmig R., Weiss A., Wohlmuth B. I., “Dynamic capillary effects in heterogeneous porous media”, Comput. Geosciences, 11:3 (2007), 261–274 | DOI | MR | Zbl
[13] Benjamin T. B., Bona J. L., Mahony J. J., “Model equations for long waves in nonlinear dispersive systems”, Philos. Trans. Royal Soc. London. Ser. A, 272:1220 (1972), 47–78 | DOI | MR | Zbl
[14] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007
[15] Chernov A. V., “O kusochno postoyannoi approksimatsii v raspredelennykh zadachakh optimizatsii”, Tr. IMM UrO RAN, 21, no. 1, 2015, 305–321
[16] Iosida K., Funktsionalnyi analiz, LKI, M., 2007
[17] Zvyagin V. G., Turbin M. V., “Issledovanie nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya zhidkostei Kelvina–Foigta”, Sovremen. matem. Fundament. napravleniya, 31 (2009), 3–144