On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 60-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a Cauchy problem associated with an evolutionary operator equation of first kind with controlled additional term depending nonlinearly on a phase variable in a Banach space we obtain sufficient conditions of the total (with respect to a whole set of admissible controls) preservation of univalent global solvability, and also uniform estimate for solutions. As examples we consider initial boundary value problems associated with a pseudoparabolic equation and a system of Oskolkov equations.
Keywords: evolutionary operator equation of first kind in a Banach space, controlled nonlinearity, total preservation of global solvability, system of Oskolkov equations.
Mots-clés : pseudoparabolic equation
@article{IVM_2018_11_a5,
     author = {A. V. Chernov},
     title = {On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--74},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_11_a5/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 60
EP  - 74
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_11_a5/
LA  - ru
ID  - IVM_2018_11_a5
ER  - 
%0 Journal Article
%A A. V. Chernov
%T On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 60-74
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_11_a5/
%G ru
%F IVM_2018_11_a5
A. V. Chernov. On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 60-74. http://geodesic.mathdoc.fr/item/IVM_2018_11_a5/

[1] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2011, no. 3, 95–107

[2] Chernov A. V., “O totalnom sokhranenii razreshimosti upravlyaemogo uravneniya tipa Gammershteina s neizotonnym i nemazhoriruemym operatorom”, Izv. vuzov. Matem., 2017, no. 6, 83–94 | Zbl

[3] Sumin V. I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, v. I, NNGU, N. Novgorod, 1992

[4] Korpusov M. O., Sveshnikov A. G., “Razrushenie reshenii silno nelineinykh uravnenii psevdoparabolicheskogo tipa”, Sovremen. matem. i ee prilozh., 40 (2006), 3–138

[5] Sumin V. I., Chernov A. V., “Volterrovy funktsionalno-operatornye uravneniya v teorii optimizatsii raspredelennykh sistem”, Tr. Mezhdunar. konf. “Dinamika sistem i protsessy upravleniya”, posvyaschennoi 90-letiyu so dnya rozhd. akad. N. N. Krasovskogo (Ekaterinburg, Rossiya, 15–20 sentyabrya 2014 g.), IMM UrO RAN–URFU, Ekaterinburg, 2015, 293–300

[6] Gaevskii Kh., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[7] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2012, no. 3, 62–73

[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[9] Chen P. J., Gurtin M. E., “On a theory of heat conduction involving two temperatures”, Z. Angew. Math. Phys., 19:4 (1968), 614–627 | DOI | MR | Zbl

[10] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, PMM, 24:5 (1960), 852–864 | Zbl

[11] Barenblatt G. I., Garcia-Azorero J., De Pablo A., Vazquez J. L., “Mathematical model of the non-equilibrium water-oil displacement in porous strata”, Appl. Anal., 65:1–2 (1997), 19–45 | DOI | MR | Zbl

[12] Helmig R., Weiss A., Wohlmuth B. I., “Dynamic capillary effects in heterogeneous porous media”, Comput. Geosciences, 11:3 (2007), 261–274 | DOI | MR | Zbl

[13] Benjamin T. B., Bona J. L., Mahony J. J., “Model equations for long waves in nonlinear dispersive systems”, Philos. Trans. Royal Soc. London. Ser. A, 272:1220 (1972), 47–78 | DOI | MR | Zbl

[14] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[15] Chernov A. V., “O kusochno postoyannoi approksimatsii v raspredelennykh zadachakh optimizatsii”, Tr. IMM UrO RAN, 21, no. 1, 2015, 305–321

[16] Iosida K., Funktsionalnyi analiz, LKI, M., 2007

[17] Zvyagin V. G., Turbin M. V., “Issledovanie nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya zhidkostei Kelvina–Foigta”, Sovremen. matem. Fundament. napravleniya, 31 (2009), 3–144