On a class of operator equations in locally convex spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 33-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a general method of solving equations whose left-hand side is a series by powers of a linear continuous operator acting in a locally convex space. Obtained solutions are given by operator series by powers of the same operator as the left-hand side of the equation. Research is realized by means of characteristics (of order and type) of operator as well as operator characteristics (of operator order and operator type) of vector relatively of an operator. In research we also use a convergence of operator series on equicontinuous bornology.
Keywords: locally convex space, order and type of an operator, characteristic function of an operator.
@article{IVM_2018_11_a3,
     author = {S. N. Mishin},
     title = {On a class of operator equations in locally convex spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--50},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_11_a3/}
}
TY  - JOUR
AU  - S. N. Mishin
TI  - On a class of operator equations in locally convex spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 33
EP  - 50
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_11_a3/
LA  - ru
ID  - IVM_2018_11_a3
ER  - 
%0 Journal Article
%A S. N. Mishin
%T On a class of operator equations in locally convex spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 33-50
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_11_a3/
%G ru
%F IVM_2018_11_a3
S. N. Mishin. On a class of operator equations in locally convex spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 33-50. http://geodesic.mathdoc.fr/item/IVM_2018_11_a3/

[1] Gelfond A. O., Ischislenie konechnykh raznostei, GITTL, M., 1952 | MR

[2] Gelfond A. O., “Lineinye differentsialnye uravneniya s postoyannymi koeffitsientami beskonechnogo poryadka i asimptoticheskie periody tselykh funktsii”, Tr. MIAN SSSR, 38, 1951, 42–67 | Zbl

[3] Gelfond A. O., Leontev A. F., “Ob odnom obobschenii ryada Fure”, Matem. sb., 29:3 (1951), 477–507

[4] Demchenko T. I., “Issledovanie razreshimosti uravnenii beskonechnogo poryadka v obobschennykh proizvodnykh Gelfonda–Leonteva v nekotorom klasse tselykh funktsii”, Lit. matem. sb., 7:4 (1967), 611–618 | Zbl

[5] Demchenko T. I., “O razreshimosti odnogo klassa differentsialnykh uravnenii beskonechnogo poryadka v obobschennykh proizvodnykh”, Izv. vuzov. Matem., 1973, no. 8, 35–42

[6] Korobeinik Yu. F., O razreshimosti v kompleksnoi oblasti nekotorykh obschikh klassov lineinykh operatornykh uravnenii, Rostov-na-Donu, 2005

[7] Korobeinik Yu. F., “Ob odnom klasse uravnenii beskonechnogo poryadka v oboboschennykh proizvodnykh”, Lit. matem. sb., 4:4 (1964), 495–515

[8] Korobeinik Yu. F., “Ob uravneniyakh beskonechnogo poryadka v oboboschennykh proizvodnykh”, Sib. matem. zhurn., 5:6 (1964), 1259–1281 | Zbl

[9] Leontev A. F., Obobscheniya pyadov eksponent, Nauka, M., 1981

[10] Leontev A. F., “Differentsialnye uravneniya beskonechnogo poryadka i ikh primeneniya”, Tr. IV Vsesoyuzn. matem. s'ezda (Leningrad, 1964), v. II, 648–660

[11] Frolov Yu. N., “O neodnorodnykh uravneniyakh beskonechnogo poryadka v obobschennykh proizvodnykh”, Vestn. MGU, 1960, no. 4, 3–13

[12] Frolov Yu. N., “O resheniyakh uravneniya beskonechnogo poryadka v obobschennykh proizvodnykh”, Tr. MIAN SSSR, 64, 1961, 294–315 | Zbl

[13] Radyno Ya. V., Lineinye uravneniya i bornologiya, Izd-vo BGU, Minsk, 1982

[14] Kantopovich L. V., Akilov G. P., Funktsionalnyi analiz v nopmipovannykh ppostpanstvakh, Fizmatgiz, M., 1959

[15] Gromov V. P., Mishin S. N., Panyushkin S. V., Operatory konechnogo poryadka i differentsialno-operatornye uravneniya, OGU, Orel, 2009

[16] Mishin S. H., “Odnorodnye differentsialno-operatornye uravneniya v lokalno vypuklykh prostranstvakh”, Izv. vuzov. Matem., 2017, no. 1, 26–43

[17] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983

[18] Mishin S. H., “Svyaz kharakteristik posledovatelnosti operatorov s bornologicheskoi skhodimostyu”, Vestn. RUDN. Ser.: Matem., informatika, fiz., 2010, no. 4, 26–34

[19] Radyno Ya. V., “Lineinye differentsialnye uravneniya v lokalno vypuklykh prostranstvakh. I. Regulyarnye operatory i ikh svoistva”, Differents. uravneniya, 13:8 (1977), 1402–1410 | Zbl

[20] Kondakov V. P., Runov L. V., Kovalchuk V. E., “Bornologii i estestvennoe rasshirenie klassov regulyarnykh elementov v algebrakh operatorov”, Vladikavkazsk. matem. zhurn., 8:3 (2006), 29–39 | MR | Zbl

[21] Nelson E., “Analiticheskie vektory”, Sb. perevodov “Matem.”, 6:3 (1962), 89–131

[22] Goodman R., “Analytic and entire vectors for representations of Lie groups”, Trans. Amer. Math. Soc., 143 (1969), 55–76 | DOI | MR | Zbl

[23] Radyno Ya. V., “Prostranstvo vektorov eksponentsialnogo tipa”, DAN BSSR, 27:9 (1983), 791–793 | Zbl

[24] Mishin S. H., “Invariantnost poryadka i tipa posledovatelnosti operatorov”, Matem. zametki, 100:3 (2016), 399–409 | DOI | Zbl

[25] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967

[26] Krasichkov I. F., “O zamknutykh idealakh v lokalno-vypuklykh algebrakh tselykh funktsii”, Izv. AN SSSR, ser. matem., 31:1 (1967), 37–60 | Zbl

[27] Krasichkov I. F., “Polnota v prostranstvakh kompleksnoznachnykh funktsii, opisyvaemykh povedeniem modulya”, Matem. sb., 68:1 (1965), 26–57 | Zbl

[28] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987