Classification of extended Clifford algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 27-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Considering tensor products of special commutative algebras and general real Clifford algebras, we arrive at extended Clifford algebras. We have found that there are five types of extended Clifford algebras. The class of extended Clifford algebras is closed with respect to the tensor product.
Keywords: Clifford algebra, quasi Clifford algebras, extended Clifford algebra, tensor product, Cartan–Bott periodicity
Mots-clés : complexification.
@article{IVM_2018_11_a2,
     author = {N. G. Marchuk},
     title = {Classification of extended {Clifford} algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--32},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_11_a2/}
}
TY  - JOUR
AU  - N. G. Marchuk
TI  - Classification of extended Clifford algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 27
EP  - 32
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_11_a2/
LA  - ru
ID  - IVM_2018_11_a2
ER  - 
%0 Journal Article
%A N. G. Marchuk
%T Classification of extended Clifford algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 27-32
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_11_a2/
%G ru
%F IVM_2018_11_a2
N. G. Marchuk. Classification of extended Clifford algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 27-32. http://geodesic.mathdoc.fr/item/IVM_2018_11_a2/

[1] Gastineau-Hills H. M., “Quasi Clifford algebras and systems of orthogonal designs”, J. Austral. Math. Soc. (Ser. A), 32 (1982), 1–23 | DOI | MR | Zbl

[2] Susinder Rajan G., Sundar Rajan B., STBCs from representation of extended Clifford algebras, 2007, arXiv: 0704.2507v1

[3] Porteous Ian R., Clifford algebras and the classical groups, Cambridge Stud. in Advanced Math., 50, Cambridge Univ. Press, 1995 | MR | Zbl

[4] Marchuk N. G., Shirokov D. S., “General solutions of one class of field equations”, Reports Math. Phys., 78:3 (2016), 305–326 | DOI | MR | Zbl

[5] Zharinov V. V., “O preobrazovanii Beklunda”, TMF, 189:3 (2016), 323–334 | DOI | Zbl

[6] Zharinov V. V., “Zakony sokhraneniya, differentsialnye tozhdestva i svyazi uravnenii v chastnykh proizvodnykh”, TMF, 185:2 (2015), 227–251 | DOI | Zbl

[7] Marchuk N. G., “Demonstratsionnoe predstavlenie i tenzornye proizvedeniya algebr Klifforda”, Sovremen. probl. matem., mekhan. i matem. fiz., Tr. MIAN, 290, MAIK, M., 2015, 154–165 | Zbl

[8] Jacobson N., Structure and representations of Jordan algebra, Colloquium Publ., 39, Amer. Math. Soc., 1968 | DOI | MR

[9] Lounesto P., Clifford algebras and spinors, Cambridge Univ. Press, 2001 | MR | Zbl