Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_11_a2, author = {N. G. Marchuk}, title = {Classification of extended {Clifford} algebras}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {27--32}, publisher = {mathdoc}, number = {11}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_11_a2/} }
N. G. Marchuk. Classification of extended Clifford algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 27-32. http://geodesic.mathdoc.fr/item/IVM_2018_11_a2/
[1] Gastineau-Hills H. M., “Quasi Clifford algebras and systems of orthogonal designs”, J. Austral. Math. Soc. (Ser. A), 32 (1982), 1–23 | DOI | MR | Zbl
[2] Susinder Rajan G., Sundar Rajan B., STBCs from representation of extended Clifford algebras, 2007, arXiv: 0704.2507v1
[3] Porteous Ian R., Clifford algebras and the classical groups, Cambridge Stud. in Advanced Math., 50, Cambridge Univ. Press, 1995 | MR | Zbl
[4] Marchuk N. G., Shirokov D. S., “General solutions of one class of field equations”, Reports Math. Phys., 78:3 (2016), 305–326 | DOI | MR | Zbl
[5] Zharinov V. V., “O preobrazovanii Beklunda”, TMF, 189:3 (2016), 323–334 | DOI | Zbl
[6] Zharinov V. V., “Zakony sokhraneniya, differentsialnye tozhdestva i svyazi uravnenii v chastnykh proizvodnykh”, TMF, 185:2 (2015), 227–251 | DOI | Zbl
[7] Marchuk N. G., “Demonstratsionnoe predstavlenie i tenzornye proizvedeniya algebr Klifforda”, Sovremen. probl. matem., mekhan. i matem. fiz., Tr. MIAN, 290, MAIK, M., 2015, 154–165 | Zbl
[8] Jacobson N., Structure and representations of Jordan algebra, Colloquium Publ., 39, Amer. Math. Soc., 1968 | DOI | MR
[9] Lounesto P., Clifford algebras and spinors, Cambridge Univ. Press, 2001 | MR | Zbl