Geometric construction of linear complex of planes of $B_3$ type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using invariant geometric images of a trivector of type $(884; 400)$, we construct its basic group of automorphisms. We formulate and prove a theorem on necessary and sufficient conditions for determining of all planes of a linear complex associated with a trivector of a given type accurate to linear transformations of its automorphism group. In the process of proving of the theorem, we find all kinds of singular lines and for their nonsingular lines construct their polar hyperplanes.
Keywords: trivector, singulars points of the first and second kinds, singulars and non-singulars directs, singulars subspaces, polar hyperplane, automorphism group of a trivector.
@article{IVM_2018_11_a1,
     author = {A. N. Makokha},
     title = {Geometric construction of linear complex of planes of $B_3$ type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--26},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_11_a1/}
}
TY  - JOUR
AU  - A. N. Makokha
TI  - Geometric construction of linear complex of planes of $B_3$ type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 15
EP  - 26
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_11_a1/
LA  - ru
ID  - IVM_2018_11_a1
ER  - 
%0 Journal Article
%A A. N. Makokha
%T Geometric construction of linear complex of planes of $B_3$ type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 15-26
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_11_a1/
%G ru
%F IVM_2018_11_a1
A. N. Makokha. Geometric construction of linear complex of planes of $B_3$ type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 15-26. http://geodesic.mathdoc.fr/item/IVM_2018_11_a1/

[1] Makokha A. N., “Lineinyi kompleks ploskostei, assotsiirovannyi s trivektorom tipa $(886; 410)$”, Sovremen. geometriya, Mezhvuzovsk. sb. nauch. tr., Izd-vo LGPI im. A. I. Gertsena, L., 1980, 44–63

[2] Longo C., “Sui complessi lineari di piani”, Ann. Mat. Pura Appl. 4, 37 (1954), 61–138 | DOI | MR

[3] Gurevich G. B., “Algebra trivektora. Ch. II”, Tr. semin. po vektorn. i tenzorn. analizu, 6, Izd-vo MGU, 1948, 28–124 | MR

[4] Makokha A. N., “Osobye tochki trivektorov vosmogo ranga v $P_7$”, Geometriya pogruzhennykh mnogoobrazii, Sb. nauch. tr., Izd-vo Moskovsk. ped. in-ta im. N. K. Krupskoi, M., 1972, 69–97

[5] Makokha A. N., “Gruppy avtomorfizmov trivektorov vosmogo ranga”, Mater. Mezhdunarodn. geom. shkoly-seminara pamyati N. V. Efimova (Abrau-Dyurso, 27 sentyabrya–4 oktyabrya 1996), ed. S. B. Klimentov, Izd-vo NPP KORALL-MIKRO, Rostov na Donu, 50–51

[6] Makokha A. N., “Lineinye operatory, svyazannye s trivektorom tipa $(887; 520)$, i osnovnaya gruppa avtomorfizmov etogo trivektora”, Izv. vuzov. Matem., 1981, no. 7, 46–53 | MR | Zbl

[7] Makokha A. N., “Gruppa avtomorfizmov lineinogo kompleksa ploskostei tipa $A_3$ i osobye pryamye etogo kompleksa”, Izv. vuzov. Matem., 1986, no. 8, 40–46 | MR | Zbl

[8] Makokha A. N., “Gruppa lineinykh preobrazovanii, sokhranyayuschikh trivektor tipa $(888; 852)$”, Izv. vuzov. Matem., 1988, no. 2, 45–49 | MR

[9] Makokha A. N., “Nekotorye svoistva lineinykh operatorov, svyazannykh s trivektorom tipa $B_3$”, Vestn. Stavropolsk. gos. un-ta, 1996, no. 7, 33–36