On simplified formulas for the central exponents of differential systems with non-uniform scales
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2018), pp. 60-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Vinograd–Millionshchikov central exponents, which represent the exact outer boundaries for the mobility of the extremal values of the Lyapunov and Perron exponents of a linear differential system under uniformly small perturbations of its coefficients. We prove the possibility of calculating those exponents using simplified formulas with expanding time scales and obtain concrete estimates of the central exponents with simplified ones, calculated in different scales: thick, expanding, slowly expanding and sparse.
Keywords: differential equation, linear system, stability, Lyapunov exponent, central exponent.
@article{IVM_2018_10_a6,
     author = {I. N. Sergeev},
     title = {On simplified formulas for the central exponents of differential systems with non-uniform scales},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--78},
     publisher = {mathdoc},
     number = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_10_a6/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - On simplified formulas for the central exponents of differential systems with non-uniform scales
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 60
EP  - 78
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_10_a6/
LA  - ru
ID  - IVM_2018_10_a6
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T On simplified formulas for the central exponents of differential systems with non-uniform scales
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 60-78
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_10_a6/
%G ru
%F IVM_2018_10_a6
I. N. Sergeev. On simplified formulas for the central exponents of differential systems with non-uniform scales. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2018), pp. 60-78. http://geodesic.mathdoc.fr/item/IVM_2018_10_a6/

[1] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966

[2] Izobov N. A., Vvedenie v teoriyu pokazatelei Lyapunova, BGU, Minsk, 2006

[3] Vinograd R. E., “O tsentralnom kharakteristicheskom pokazatele sistemy differentsialnykh uravnenii”, Matem. sb., 42:2 (1957), 207–222 | Zbl

[4] Millionschikov V. M., “Dokazatelstvo dostizhimosti tsentralnykh pokazatelei”, Sib. matem. zhurn., 10:1 (1969), 99–104 | MR

[5] Vetokhin A. N., “Klass Bera maksimalnykh polunepreryvnykh snizu minorant pokazatelei Lyapunova”, Differents. uravneniya, 34:10 (1998), 1313–1317 | Zbl

[6] Sergeev I. N., “Klassy Bera mazhoranty starshego i minoranty mladshego pokazatelei Perrona lineinykh sistem”, Differents. uravneniya, 41:11 (2005), 1576

[7] Sergeev I. N., “Tochnye verkhnie granitsy podvizhnosti pokazatelei Lyapunova sistemy differentsialnykh uravnenii i povedenie pokazatelei pri vozmuscheniyakh, stremyaschikhsya k nulyu na beskonechnosti”, Differents. uravneniya, 16:3 (1980), 438–448 | MR | Zbl

[8] Sergeev I. N., “Ob universalnykh formulakh dlya tsentralnykh pokazatelei lineinykh sistem”, Differents. uravneniya, 52:11 (2016), 1589–1590

[9] Sergeev I. N., “Uproschennye tsentralnye pokazateli lineinykh differentsialnykh sistem v raznykh shkalakh”, Differents. uravneniya, 53:11 (2017), 1561–1563

[10] Sergeev I. N., “Nekotorye svoistva tsentralnykh pokazatelei lineinykh differentsialnykh sistem”, XVII Mezhdunar. nauchnaya konfer. po differents. uravneniyam, Eruginskie chteniya–2017, Tez. dokl. (Minsk, 16–20 maya g.), v. 1, IM NAN Belarusi, Minsk, 2017, 36–37

[11] Izobov N. A., “O mnozhestve nizhnikh pokazatelei lineinoi differentsialnoi sistemy”, Differents. uravneniya, 1:4 (1965), 469–477 | MR | Zbl

[12] Izobov N. A., “Eksponentsialnye pokazateli lineinoi sistemy i ikh vychislenie”, Dokl. AN BSSR, 26:1 (1982), 5–8 | MR

[13] Millionschikov V. M., “Vspomogatelnye orbitalnye pokazateli v rastuschikh shkalakh vremeni”, UMN, 94:4 (1994), 135

[14] Sergeev I. N., “Ekstremalnye znacheniya verkhnego pokazatelya v neravnomernykh shkalakh vremeni”, Differents. uravneniya, 31:5 (1995), 913

[15] Makarov E. K., “O realizatsii chastichnykh pokazatelei reshenii lineinykh differentsialnykh sistem na geometricheskikh progressiyakh”, Differents. uravneniya, 32:12 (1996), 1710–1711 | MR | Zbl

[16] Barabanov E. A., “O vychislenii pokazatelei reshenii lineinykh differentsialnykh sistem po vremennym geometricheskim progressiyam”, Differents. uravneniya, 33:12 (1997), 1592–1600 | MR | Zbl

[17] Lipnitskii A. V., “K voprosu o vychislenii pokazatelei Lyapunova lineinykh sistem po vremennym geometricheskim progressiyam”, Differents. uravneniya, 39:11 (2003), 1577

[18] Dolgov A. V., “Ob odnom neravenstve dlya nizhnikh pokazatelei reshenii lineinykh sistem”, Differents. uravneniya, 34:11 (1998), 1578

[19] Perron O., “Die Ordnungszahlen linearer Differentialgleichungssysteme”, Math. Z., 31 (1930), 748–766 | DOI | MR | Zbl

[20] Millionschikov V. M., “Sistemy s integralnoi razdelennostyu vsyudu plotny v mnozhestve vsekh lineinykh sistem differentsialnykh uravnenii”, Differents. uravneniya, 5:7 (1969), 1167–1170 | MR

[21] Sergeev I. N., “K teorii pokazatelei Lyapunova lineinykh sistem differentsialnykh uravnenii”, Tr. sem. im. I.G. Petrovskogo, 9, 1983, 111–166 | Zbl