On simplified formulas for the central exponents of differential systems with non-uniform scales
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2018), pp. 60-78
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Vinograd–Millionshchikov central exponents, which represent the exact outer boundaries for the mobility of the extremal values of the Lyapunov and Perron exponents of a linear differential system under uniformly small perturbations of its coefficients. We prove the possibility of calculating those exponents using simplified formulas with expanding time scales and obtain concrete estimates of the central exponents with simplified ones, calculated in different scales: thick, expanding, slowly expanding and sparse.
Keywords:
differential equation, linear system, stability, Lyapunov exponent, central exponent.
@article{IVM_2018_10_a6,
author = {I. N. Sergeev},
title = {On simplified formulas for the central exponents of differential systems with non-uniform scales},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {60--78},
publisher = {mathdoc},
number = {10},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2018_10_a6/}
}
TY - JOUR AU - I. N. Sergeev TI - On simplified formulas for the central exponents of differential systems with non-uniform scales JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 60 EP - 78 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_10_a6/ LA - ru ID - IVM_2018_10_a6 ER -
I. N. Sergeev. On simplified formulas for the central exponents of differential systems with non-uniform scales. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2018), pp. 60-78. http://geodesic.mathdoc.fr/item/IVM_2018_10_a6/