On analytic periodic solutions to nonlinear differential equations with a delay (advancing)
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2018), pp. 34-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system of a type of reaction–diffusion in which the diffusion coefficients depend in an arbitrary way on the spatial variables and concentrations, and the reactions are described by homogeneous functions with coefficients that depend in a special way on the spatial variables. It is shown that the system has family of exact solutions expressed through solutions to a system of ordinary differential equations (ODE) with the homogeneous functions in right-hand sides. For a special case of the ODE system we construct the general solution representable by Jacobi higher transcendental functions. It is established that solutions are periodic functions and satisfy non-linear differential equations with delay (advancing) which size is defined by the choice of initial conditions for ODE system. It is shown that these periodic solutions are analytic functions, representable in the neighborhood of each point on the period by the convergent power series.
Mots-clés : reaction–diffusion system, exact solution
Keywords: reduction to ODE system, first integral, Jacobi elliptic function, differential equation with delay (advancing), periodic solution.
@article{IVM_2018_10_a3,
     author = {A. A. Kosov and E. I. Semenov},
     title = {On analytic periodic solutions to nonlinear differential equations with a delay (advancing)},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {34--42},
     publisher = {mathdoc},
     number = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_10_a3/}
}
TY  - JOUR
AU  - A. A. Kosov
AU  - E. I. Semenov
TI  - On analytic periodic solutions to nonlinear differential equations with a delay (advancing)
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 34
EP  - 42
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_10_a3/
LA  - ru
ID  - IVM_2018_10_a3
ER  - 
%0 Journal Article
%A A. A. Kosov
%A E. I. Semenov
%T On analytic periodic solutions to nonlinear differential equations with a delay (advancing)
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 34-42
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_10_a3/
%G ru
%F IVM_2018_10_a3
A. A. Kosov; E. I. Semenov. On analytic periodic solutions to nonlinear differential equations with a delay (advancing). Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2018), pp. 34-42. http://geodesic.mathdoc.fr/item/IVM_2018_10_a3/

[1] Cherniha R., King J. R., “Non-linear reaction-diffusion systems with variable diffusivities: Lie symmetries, ansätze and exact solutions”, J. Math. Anal. Appl., 308:1 (2005), 11–35 | DOI | MR | Zbl

[2] Polyanin A. D., Zaitsev V. F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki: Tochnye resheniya, Fizmatlit, M., 2002

[3] Slinko M. G., Zelenyak T. I., Akramov T. A., Lavrentev M. M. (ml.), Sheplev V. S., “Nelineinaya dinamika kataliticheskikh reaktsii i protsessov (obzor)”, Matem. modelirovanie, 9:12 (1997), 87–100 | MR

[4] Nefedov N. N., Nikulin E. I., “Existence and stability of periodic solutions for reaction–diffusion equations in the two-dimensional case”, Model. Anal. Information Syst., 23:3 (2016), 342–348 | DOI | MR

[5] Erugin N. P., Kniga dlya chteniya po obschemu kursu differentsialnykh uravnenii, Izd-vo Nauka i tekhnika, Minsk, 1972 | MR

[6] Cherepennikov V. B., “Analiticheskie resheniya zadachi Koshi dlya nekotorykh lineinykh sistem funktsionalno-differentsialnykh uravnenii neitralnogo tipa”, Izv. vuzov. Matem., 1994, no. 6, 90–98 | Zbl

[7] Cherepennikov V. B., “O razreshimosti v klasse analiticheskikh funktsii nekotorykh lineinykh sistem funktsionalno-differentsialnykh uravnenii v okrestnosti regulyarnoi osoboi tochki”, Izv. vuzov. Matem., 1996, no. 5, 73–78 | MR | Zbl

[8] Cherepennikov V. B., Ermolaeva P. G., “Chislennyi eksperiment v issledovanii polinomialnykh kvazireshenii lineinykh differentsialno-raznostnykh uravnenii”, Izv. vuzov. Matem., 2008, no. 7, 57–72

[9] van Brunt B., Kim Hong Oh, Derfel G., “Holomorphic solutions to functional differential equations”, J. Math. Anal. Appl., 365:1 (2010), 350–357 | MR

[10] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, OGIZ, Gostekhizdat, 1948