Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_10_a0, author = {M. Kh. Beshtokov}, title = {To boundary-value problems for degenerating pseudoparabolic equations with {Gerasimov--Caputo} fractional derivative}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--16}, publisher = {mathdoc}, number = {10}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_10_a0/} }
TY - JOUR AU - M. Kh. Beshtokov TI - To boundary-value problems for degenerating pseudoparabolic equations with Gerasimov--Caputo fractional derivative JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 3 EP - 16 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_10_a0/ LA - ru ID - IVM_2018_10_a0 ER -
%0 Journal Article %A M. Kh. Beshtokov %T To boundary-value problems for degenerating pseudoparabolic equations with Gerasimov--Caputo fractional derivative %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 3-16 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2018_10_a0/ %G ru %F IVM_2018_10_a0
M. Kh. Beshtokov. To boundary-value problems for degenerating pseudoparabolic equations with Gerasimov--Caputo fractional derivative. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2018), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2018_10_a0/
[1] Rubinshtein L. I., “K voprosu o protsesse rasprostraneniya tepla v geterogennykh sredakh”, Izv. AN SSSR, ser. geogr., 12:1 (1948), 27–45
[2] Chudnovskii A. F., Teplofizika pochv, Nauka, M., 1976
[3] Hallaire M., “Le potentiel efficace de l'eau dans le sol en regime de dessechement”, L'Eau et la Production Vegetale, 9, Institut National de la Recherche Agronomique, Paris, 1964, 27–62
[4] Barenblat G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, PMM, 25:5 (1960), 852–864
[5] Sveshnikov A. G., Alshin A. B., Korpusov M. O. Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007
[6] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk, 1987
[7] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primeneniya, NIII PMA KBNTs RAN, Nalchik, 2000
[8] Alikhanov A. A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. uravneniya, 46:5 (2010), 660–666 | Zbl
[9] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys., 280 (2015), 424–438 | DOI | MR | Zbl
[10] Goloviznin V. M., Kiselev V. P., Korotkii I. A., Chislennye metody resheniya uravneniya drobnoi diffuzii s drobnoi proizvodnoi po vremeni v odnomernom sluchae, In-t probl. bezopasnogo razvitiya atomnoi energetiki RAN, M., 2003
[11] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zhurn. vychisl. matem. i matem. fiz., 46:10 (2006), 1871–1881 | MR
[12] Beshtokov M. Kh., “O chislennom reshenii nelokalnoi kraevoi zadachi dlya vyrozhdayuschegosya psevdoparabolicheskogo uravneniya”, Differents. uravneniya, 52:10 (2016), 1393–1406 | DOI | Zbl
[13] Beshtokov M. Kh., “Raznostnyi metod resheniya nelokalnoi kraevoi zadachi dlya vyrozhdayuschegosya psevdoparabolicheskogo uravneniya tretego poryadka s peremennymi koeffitsientami”, Zhurn. vychisl. matem. i matem. fiz., 56:10 (2016), 1780–1794 | DOI | MR | Zbl
[14] Caputo H., “Linear model of dissipation whose $Q$ is almost frequency independent. II”, Geophys. J. Roy. Astronom. Soc., 13 (1967), 529–539 | DOI
[15] Gerasimov A. N., “Obobschenie lineinykh zakonov deformatsii i ikh prilozhenie k zadacham vnutrennego treniya”, AN SSSR. PMM, 12 (1948), 251–260 | Zbl
[16] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983
[17] Li D., Liao J.-L., Sun W., J. Wang J., Zhang J., Analysis of L1–Galerkin FEMs for time-fractional nonlinear parabolic problems, 2016, arXiv: 1612.00562v1