Mots-clés : distribution, $CR$-distribution
@article{IVM_2017_9_a4,
author = {B. P. Otemuratov},
title = {On condition of holomorphic continuations of functions from a boundary of a domain},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {48--53},
year = {2017},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_9_a4/}
}
B. P. Otemuratov. On condition of holomorphic continuations of functions from a boundary of a domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 48-53. http://geodesic.mathdoc.fr/item/IVM_2017_9_a4/
[1] Bochner S., “Analytic and meromorphic continuation by means of Green' formula”, Ann. Math., 44:3 (1943), 652–673 | DOI | MR | Zbl
[2] Airapetyan R.A., Khenkin G.M., “Integralnye predstavleniya differentsialnykh form na mnogoobraziyakh Koshi–Rimana i teoriya $CR$-funktsii”, UMN, 39:3 (1984), 39–106
[3] Kytmanov A.M., Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992
[4] Folland G.B., Kohn J.J., The Neumann problem for the Cauchy–Riemann complex, Ann. Math. Stud., 75, Princeton Univ. Press, NJ, 1972 | MR | Zbl
[5] Aronov A.M., Kytmanov A.M., “O golomorfnosti funktsii, predstavimykh integralom Martinelli–Bokhnera”, Funkts. analiz i ego pril., 9:3 (1975), 83–84
[6] Kytmanov A.M., Aizenberg L.A., “O golomorfnosti nepreryvnykh funktsii, predstavimykh integralom Martinelli–Bokhnera”, Izv. AN ArmSSR. Ser. matem., 13:2 (1978), 158–169 | Zbl
[7] Romanov A.V., “Skhodimost iteratsii operatora Martinelli–Bokhnera i uravnenie Koshi–Rimana”, DAN SSSR, 242:4 (1978), 780–783 | Zbl
[8] Egorov Yu.V., Shubin M.A., “Lineinye differentsialnye uravneniya s chastnymi proizvodnymi. Osnovy klassicheskoi teorii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 30, VINITI, M., 1988, 5–255