To the question on continuous parameterization of spatial figures having an ellipse in a section
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 30-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In solving problems of mechanics of shells by numerical methods, inevitably arises a problem of continuous parameterization of calculated shell construction, requiring a calculation of necessary geometrical descriptions in an arbitrary point of examined shell. At that, position of a point must be completely defined, and the used geometrical parameters must have clear geometrical interpretation. We propose new variants of formulas, allowing to execute continuous parameterization of spatial figures having an ellipse in a section, and possessing clear geometric interpretation.
Keywords: radius-vector, parameterization of spatial figures, ellipse.
@article{IVM_2017_9_a2,
     author = {Yu. V. Klochkov and A. P. Nikolaev and T. A. Kiseleva},
     title = {To the question on continuous parameterization of spatial figures having an ellipse in a section},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {30--35},
     publisher = {mathdoc},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_9_a2/}
}
TY  - JOUR
AU  - Yu. V. Klochkov
AU  - A. P. Nikolaev
AU  - T. A. Kiseleva
TI  - To the question on continuous parameterization of spatial figures having an ellipse in a section
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 30
EP  - 35
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_9_a2/
LA  - ru
ID  - IVM_2017_9_a2
ER  - 
%0 Journal Article
%A Yu. V. Klochkov
%A A. P. Nikolaev
%A T. A. Kiseleva
%T To the question on continuous parameterization of spatial figures having an ellipse in a section
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 30-35
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_9_a2/
%G ru
%F IVM_2017_9_a2
Yu. V. Klochkov; A. P. Nikolaev; T. A. Kiseleva. To the question on continuous parameterization of spatial figures having an ellipse in a section. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 30-35. http://geodesic.mathdoc.fr/item/IVM_2017_9_a2/

[1] Pogorelov A.V., Differentsialnaya geometriya, Nauka, M., 1974

[2] Borisenko A.I., Tarapov I.E., Vektornyi analiz i nachala tenzornogo ischisleniya, Vyssh. shkola, M., 1966

[3] Novozhilov V.V., Teoriya tonkikh obolochek, Izd-vo S.-Peterb. un-ta, SPb., 2010

[4] Sedov L.I., Mekhanika sploshnoi sredy, Nauka, M., 1976

[5] Golovanov A.I., Tyuleneva O.N., Shigabutdinov A.F., Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii, Fizmatlit, M., 2006

[6] Skopinskii V.N., Napryazheniya v peresekayuschikhsya obolochkakh, Fizmatlit, M., 2008

[7] Bathe K.J., Finite element procedures, Prentice Hall, N.J., 1996

[8] Oden Dzh., Konechnye elementy v nelineinoi mekhanike sploshnykh sred, Mir, M., 1976

[9] Krivoshapko S.N., Ivanov V.N., Encyclopedia of Analytical Surfaces, Springer, International Publishing, Switzeland, 2015 | MR | Zbl

[10] Aleksandrov P.S., Lektsii po analiticheskoi geometrii, popolnennye neobkhodimymi svedeniyami iz algebry s prilozheniem sobraniya zadach, snabzhennykh resheniyami, sostavlennogo A.S. Parkhomenko, Nauka, M., 1968