On one boundary-value problem for an equation of higher even order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 13-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study boundary-value problem for an equation of even order in a rectangle domain. By spectral method we obtain necessary and sufficient conditions of uniqueness of a solution. The solution is constructed in the form of infinite series in eigenfunctions. We obtain sufficient conditions under which this series is a regular solution.
Keywords: differential equation, even oder, boundary-value problem, spectral method, uniqueness, series
Mots-clés : existence, uniform convergence.
@article{IVM_2017_9_a1,
     author = {B. Yu. Irgashev},
     title = {On one boundary-value problem for an equation of higher even order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--29},
     publisher = {mathdoc},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_9_a1/}
}
TY  - JOUR
AU  - B. Yu. Irgashev
TI  - On one boundary-value problem for an equation of higher even order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 13
EP  - 29
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_9_a1/
LA  - ru
ID  - IVM_2017_9_a1
ER  - 
%0 Journal Article
%A B. Yu. Irgashev
%T On one boundary-value problem for an equation of higher even order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 13-29
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_9_a1/
%G ru
%F IVM_2017_9_a1
B. Yu. Irgashev. On one boundary-value problem for an equation of higher even order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 13-29. http://geodesic.mathdoc.fr/item/IVM_2017_9_a1/

[1] Sabitov K.B., “Zadacha Dirikhle dlya uravnenii s chastnymi proizvodnymi vysokikh poryadkov”, Matem. zametki, 97:2 (2015), 262–276 | DOI | Zbl

[2] Mosolov P.P., “O zadache Dirikhle dlya uravnenii v chastnykh proizvodnykh”, Izv. vuzov. Matem., 1960, no. 3, 213–218

[3] Irgashev B.Yu., “O spektralnoi zadache dlya odnogo uravneniya vysokogo chetnogo poryadka”, Izv. vuzov. Matem., 2016, no. 7, 44–54

[4] Sabitov K.B., “Kolebaniya balki s zadelannymi kontsami”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-matem. nauk, 19:2 (2015), 311–324 | DOI

[5] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969

[6] Vilenkin N.Ya., Kombinatorika, Nauka, M., 1969

[7] Petrovskii I.G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, GIFML, M., 1961

[8] Bukhshtab A.A., Teoriya chisel, Prosveschenie, M., 1966