Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_9_a0, author = {N. S. Gabbasov and Z. Kh. Galimova}, title = {Optimal with respect to the order methods of solving integral equations in special case}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--12}, publisher = {mathdoc}, number = {9}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_9_a0/} }
TY - JOUR AU - N. S. Gabbasov AU - Z. Kh. Galimova TI - Optimal with respect to the order methods of solving integral equations in special case JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 3 EP - 12 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_9_a0/ LA - ru ID - IVM_2017_9_a0 ER -
%0 Journal Article %A N. S. Gabbasov %A Z. Kh. Galimova %T Optimal with respect to the order methods of solving integral equations in special case %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 3-12 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_9_a0/ %G ru %F IVM_2017_9_a0
N. S. Gabbasov; Z. Kh. Galimova. Optimal with respect to the order methods of solving integral equations in special case. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2017_9_a0/
[1] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978
[2] Bart G.R., Warnock R.L., “Linear integral equations of the third-kind”, SIAM J. Math. Anal., 4:4 (1973), 609–622 | DOI | MR | Zbl
[3] Keiz K.M., Tsvaifel P.F., Lineinaya teoriya perenosa, Mir, M., 1972
[4] Bzhikhatlov Kh.G., “Ob odnoi kraevoi zadache so smescheniem”, Differents. uravneniya, 9:1 (1973), 162–165 | Zbl
[5] Gabbasov N.S., “Metody resheniya integralnogo uravneniya tretego roda s fiksirovannymi osobennostyami v yadre”, Differents. uravneniya, 45:9 (2009), 1341–1348 | Zbl
[6] Gabbasov N.S., Zamaliev R.R., “Novye varianty splain-metodov dlya integralnykh uravnenii tretego roda s osobennotyami v yadre”, Differents. uravneniya, 46:9 (2010), 1320–1328 | Zbl
[7] Gabbasov N.S., Zamaliev R.R., “Novyi variant metoda podoblastei dlya integralnykh uravnenii tretego roda s osobennostyami v yadre”, Izv. vuzov. Matem., 2011, no. 5, 12–18
[8] Gabbasov N.S., “Novye varianty metoda kollokatsii dlya integralnykh uravnenii tretego roda s osobennostyami v yadre”, Differents. uravneniya, 47:9 (2011), 1344–1351 | Zbl
[9] Gabbasov N.S., “Novyi variant metoda kollokatsii dlya odnogo klassa integralnykh uravnenii v osobom sluchae”, Differents. uravneniya, 49:9 (2013), 1178–1185 | Zbl
[10] Gabbasov N.S., “Spetsialnyi pryamoi metod resheniya integralnykh uravnenii v osobom sluchae”, Differents. uravneniya, 50:9 (2014), 1245–1252 | DOI | Zbl
[11] Gabdulkhaev B.G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980
[12] Prësdorf Z., “Singulyarnoe integralnoe uravnenie s simvolom, obraschayuschimsya v nul v konechnom chisle tochek”, Matem. issled., 7, no. 1, Kishinev, 1972, 116–132 | Zbl
[13] Gabbasov N.S., Metody resheniya integralnykh uravnenii Fredgolma v prostranstvakh obobschennykh funktsii, Izd-vo Kazansk. un-ta, Kazan, 2006
[14] Gabdulkhaev B.G., Dushkov P.N., “O poligonalnom metode resheniya integralnykh uravnenii so slaboi osobennostyu”, Prilozheniya funkts. analiza k pribl. vychisleniyam, Izd-vo Kazansk. un-ta, Kazan, 1974, 37–57
[15] Agachev Yu.R., “O skhodimosti metoda splain-podoblastei dlya integralnykh uravnenii”, Izv. vuzov. Matem., 1981, no. 6, 3–10
[16] Daugavet I.K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977
[17] Zamaliev R.R., O pryamykh metodakh resheniya integralnykh uravnenii tretego roda s osobennostyami v yadre, Diss. $\dotsc$ kand. fiz.-matem. nauk, KFU, Kazan, 2012