Optimal with respect to the order methods of solving integral equations in special case
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an integral equation of the third kind with fixed singularities in the kernel. For the approximate solving of these equations in the space of generalized functions we propose and substantiate special generalized versions of spline methods. We show that the constructed methods are optimal with respect to the order.
Keywords: integral equation of the third kind, space of generalized functions, approvimate solution, spline method, theoretical substantiation, optimization with respect to the order.
@article{IVM_2017_9_a0,
     author = {N. S. Gabbasov and Z. Kh. Galimova},
     title = {Optimal with respect to the order methods of solving integral equations in special case},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_9_a0/}
}
TY  - JOUR
AU  - N. S. Gabbasov
AU  - Z. Kh. Galimova
TI  - Optimal with respect to the order methods of solving integral equations in special case
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 3
EP  - 12
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_9_a0/
LA  - ru
ID  - IVM_2017_9_a0
ER  - 
%0 Journal Article
%A N. S. Gabbasov
%A Z. Kh. Galimova
%T Optimal with respect to the order methods of solving integral equations in special case
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 3-12
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_9_a0/
%G ru
%F IVM_2017_9_a0
N. S. Gabbasov; Z. Kh. Galimova. Optimal with respect to the order methods of solving integral equations in special case. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2017_9_a0/

[1] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978

[2] Bart G.R., Warnock R.L., “Linear integral equations of the third-kind”, SIAM J. Math. Anal., 4:4 (1973), 609–622 | DOI | MR | Zbl

[3] Keiz K.M., Tsvaifel P.F., Lineinaya teoriya perenosa, Mir, M., 1972

[4] Bzhikhatlov Kh.G., “Ob odnoi kraevoi zadache so smescheniem”, Differents. uravneniya, 9:1 (1973), 162–165 | Zbl

[5] Gabbasov N.S., “Metody resheniya integralnogo uravneniya tretego roda s fiksirovannymi osobennostyami v yadre”, Differents. uravneniya, 45:9 (2009), 1341–1348 | Zbl

[6] Gabbasov N.S., Zamaliev R.R., “Novye varianty splain-metodov dlya integralnykh uravnenii tretego roda s osobennotyami v yadre”, Differents. uravneniya, 46:9 (2010), 1320–1328 | Zbl

[7] Gabbasov N.S., Zamaliev R.R., “Novyi variant metoda podoblastei dlya integralnykh uravnenii tretego roda s osobennostyami v yadre”, Izv. vuzov. Matem., 2011, no. 5, 12–18

[8] Gabbasov N.S., “Novye varianty metoda kollokatsii dlya integralnykh uravnenii tretego roda s osobennostyami v yadre”, Differents. uravneniya, 47:9 (2011), 1344–1351 | Zbl

[9] Gabbasov N.S., “Novyi variant metoda kollokatsii dlya odnogo klassa integralnykh uravnenii v osobom sluchae”, Differents. uravneniya, 49:9 (2013), 1178–1185 | Zbl

[10] Gabbasov N.S., “Spetsialnyi pryamoi metod resheniya integralnykh uravnenii v osobom sluchae”, Differents. uravneniya, 50:9 (2014), 1245–1252 | DOI | Zbl

[11] Gabdulkhaev B.G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980

[12] Prësdorf Z., “Singulyarnoe integralnoe uravnenie s simvolom, obraschayuschimsya v nul v konechnom chisle tochek”, Matem. issled., 7, no. 1, Kishinev, 1972, 116–132 | Zbl

[13] Gabbasov N.S., Metody resheniya integralnykh uravnenii Fredgolma v prostranstvakh obobschennykh funktsii, Izd-vo Kazansk. un-ta, Kazan, 2006

[14] Gabdulkhaev B.G., Dushkov P.N., “O poligonalnom metode resheniya integralnykh uravnenii so slaboi osobennostyu”, Prilozheniya funkts. analiza k pribl. vychisleniyam, Izd-vo Kazansk. un-ta, Kazan, 1974, 37–57

[15] Agachev Yu.R., “O skhodimosti metoda splain-podoblastei dlya integralnykh uravnenii”, Izv. vuzov. Matem., 1981, no. 6, 3–10

[16] Daugavet I.K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977

[17] Zamaliev R.R., O pryamykh metodakh resheniya integralnykh uravnenii tretego roda s osobennostyami v yadre, Diss. $\dotsc$ kand. fiz.-matem. nauk, KFU, Kazan, 2012