Mots-clés : Schouten–Weyl tensor
@article{IVM_2017_8_a9,
author = {P. N. Klepikov},
title = {Left-invariant {pseudo-Riemannian} metrics on four-dimensional {Lie} groups with nonzero {Schouten{\textendash}Weyl} tensor},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {92--97},
year = {2017},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a9/}
}
TY - JOUR AU - P. N. Klepikov TI - Left-invariant pseudo-Riemannian metrics on four-dimensional Lie groups with nonzero Schouten–Weyl tensor JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 92 EP - 97 IS - 8 UR - http://geodesic.mathdoc.fr/item/IVM_2017_8_a9/ LA - ru ID - IVM_2017_8_a9 ER -
P. N. Klepikov. Left-invariant pseudo-Riemannian metrics on four-dimensional Lie groups with nonzero Schouten–Weyl tensor. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 92-97. http://geodesic.mathdoc.fr/item/IVM_2017_8_a9/
[1] Besse A., Einstein manifolds, Springer-Verlag, Berlin–Heidelberg, 1987 | MR | Zbl
[2] Gray A., “Einstein-like manifolds whish are not Einstein”, Geom. Dedicata, 7 (1978), 259–280 | DOI | MR | Zbl
[3] Calvaruso G., Zaeim A., “Conformally flat homogeneous pseudo-Riemannian four-manifolds”, Tohoku Math. J., 66 (2014), 31–54 | DOI | MR | Zbl
[4] Calvaruso G., Zaeim A., “Four-dimensional Lorentzian Lie groups”, Diff. Geom. and Appl., 31 (2013), 496–509 | DOI | MR | Zbl
[5] Calvaruso G., Zaeim A., “Neutral metrics on four-dimensional Lie groups”, J. of Lie Theory, 25 (2015), 1023–1044 | MR | Zbl
[6] Zaeim A., Haji-Badali A., “Einstein-like pseudo-Riemannian homogeneous manifolds of dimension four”, Mediterranean J. Math., 13:5 (2016), 3455–3468 | DOI | MR | Zbl
[7] Gladunova O. P., Rodionov E. D., Slavskii V. V., “Harmonic tensors on three-dimensional Lie groups with left-invariant Lorentz metric”, J. Math. Sci., 198:5 (2014), 505–545 | DOI | MR
[8] Gladunova O. P., Slavskii V. V., “Left-invariant Riemannian metrics on four-dimensional unimodular Lie groups with zero-divergence Weyl tensor”, Dokl. Math., 81:2 (2010), 298–300 | DOI | MR | Zbl
[9] Voronov D. S., Rodionov E. D., “Left-invariant Riemannian metrics on four-dimensional nonunimodular Lie groups with zero-divergence Weyl tensor”, Dokl. Math., 81:3 (2010), 392–394 | DOI | MR | Zbl
[10] Gladunova O. P., Slavskii V. V., “Harmonicity of the Weyl tensor of left-invariant Riemannian metrics on four-dimensional unimodular Lie groups”, Siberian Advances in Math., 23:1 (2013), 32–46 | DOI | MR
[11] Law P. R., Algebraic classification of the Ricci curvature tensor and spinor for neutral signature in four dimensions, 2010, arXiv: 1008.0444v1 [math.DG]
[12] O'Neill B., Semi-Riemannian geometry with applications to relativity, Academic Press, 1983 | MR | Zbl
[13] Khromova O. P., Klepikov P. N., Rodionov E. D., Left-invariant pseudo-Riemannian metrics on four-dimensional Lie groups with zero Schouten–Weyl tensor, 2016, arXiv: 1611.00916v1 [math.DG]