Left-invariant pseudo-Riemannian metrics on four-dimensional Lie groups with nonzero Schouten--Weyl tensor
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 92-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate metrics on Lie groups with zero Schouten–Weyl tensor. We obtain a complete classification of metric Lie algebras of such Lie groups.
Keywords: left-invariant pseudo-Riemannian metrics, Lie groups, Ricci operator, Segre types.
Mots-clés : Schouten–Weyl tensor
@article{IVM_2017_8_a9,
     author = {P. N. Klepikov},
     title = {Left-invariant {pseudo-Riemannian} metrics on four-dimensional {Lie} groups with nonzero {Schouten--Weyl} tensor},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {92--97},
     publisher = {mathdoc},
     number = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a9/}
}
TY  - JOUR
AU  - P. N. Klepikov
TI  - Left-invariant pseudo-Riemannian metrics on four-dimensional Lie groups with nonzero Schouten--Weyl tensor
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 92
EP  - 97
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_8_a9/
LA  - ru
ID  - IVM_2017_8_a9
ER  - 
%0 Journal Article
%A P. N. Klepikov
%T Left-invariant pseudo-Riemannian metrics on four-dimensional Lie groups with nonzero Schouten--Weyl tensor
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 92-97
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_8_a9/
%G ru
%F IVM_2017_8_a9
P. N. Klepikov. Left-invariant pseudo-Riemannian metrics on four-dimensional Lie groups with nonzero Schouten--Weyl tensor. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 92-97. http://geodesic.mathdoc.fr/item/IVM_2017_8_a9/

[1] Besse A., Einstein manifolds, Springer-Verlag, Berlin–Heidelberg, 1987 | MR | Zbl

[2] Gray A., “Einstein-like manifolds whish are not Einstein”, Geom. Dedicata, 7 (1978), 259–280 | DOI | MR | Zbl

[3] Calvaruso G., Zaeim A., “Conformally flat homogeneous pseudo-Riemannian four-manifolds”, Tohoku Math. J., 66 (2014), 31–54 | DOI | MR | Zbl

[4] Calvaruso G., Zaeim A., “Four-dimensional Lorentzian Lie groups”, Diff. Geom. and Appl., 31 (2013), 496–509 | DOI | MR | Zbl

[5] Calvaruso G., Zaeim A., “Neutral metrics on four-dimensional Lie groups”, J. of Lie Theory, 25 (2015), 1023–1044 | MR | Zbl

[6] Zaeim A., Haji-Badali A., “Einstein-like pseudo-Riemannian homogeneous manifolds of dimension four”, Mediterranean J. Math., 13:5 (2016), 3455–3468 | DOI | MR | Zbl

[7] Gladunova O. P., Rodionov E. D., Slavskii V. V., “Harmonic tensors on three-dimensional Lie groups with left-invariant Lorentz metric”, J. Math. Sci., 198:5 (2014), 505–545 | DOI | MR

[8] Gladunova O. P., Slavskii V. V., “Left-invariant Riemannian metrics on four-dimensional unimodular Lie groups with zero-divergence Weyl tensor”, Dokl. Math., 81:2 (2010), 298–300 | DOI | MR | Zbl

[9] Voronov D. S., Rodionov E. D., “Left-invariant Riemannian metrics on four-dimensional nonunimodular Lie groups with zero-divergence Weyl tensor”, Dokl. Math., 81:3 (2010), 392–394 | DOI | MR | Zbl

[10] Gladunova O. P., Slavskii V. V., “Harmonicity of the Weyl tensor of left-invariant Riemannian metrics on four-dimensional unimodular Lie groups”, Siberian Advances in Math., 23:1 (2013), 32–46 | DOI | MR

[11] Law P. R., Algebraic classification of the Ricci curvature tensor and spinor for neutral signature in four dimensions, 2010, arXiv: 1008.0444v1 [math.DG]

[12] O'Neill B., Semi-Riemannian geometry with applications to relativity, Academic Press, 1983 | MR | Zbl

[13] Khromova O. P., Klepikov P. N., Rodionov E. D., Left-invariant pseudo-Riemannian metrics on four-dimensional Lie groups with zero Schouten–Weyl tensor, 2016, arXiv: 1611.00916v1 [math.DG]