Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 80-85
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we investigate the general boundary-value problem for linear integro-differential equations, specified on a segment of the number line where the order of the internal differential operators is of higher order than that of the corresponding exterior differential operator. We prove well-posedness of this problem in the Hadamard sense in new pair of non-weighted Sobolev spaces.
Keywords:
Sobolev space, integro-differential equation, general boundary-value problem, well-posedness.
@article{IVM_2017_8_a7,
author = {J. R. Agachev and M. Yu. Pershagin},
title = {Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted {Sobolev} spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {80--85},
year = {2017},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/}
}
TY - JOUR AU - J. R. Agachev AU - M. Yu. Pershagin TI - Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 80 EP - 85 IS - 8 UR - http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/ LA - ru ID - IVM_2017_8_a7 ER -
%0 Journal Article %A J. R. Agachev %A M. Yu. Pershagin %T Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 80-85 %N 8 %U http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/ %G ru %F IVM_2017_8_a7
J. R. Agachev; M. Yu. Pershagin. Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/
[1] Gabdulkhaev B. G., “Nekotorye voprosy teorii priblizhennykh metodov. II”, Izv. vuzov. Matem., 1968, no. 10, 21–29
[2] Agachev Yu. R., “Skhodimost obschego polinomialnogo proektsionnogo metoda resheniya nekorrektnykh integrodifferentsialnykh uravnenii”, Izv. vuzov. Matem., 2007, no. 8, 3–14
[3] Burenkov V. I., “O tochnykh postoyannykh v neravenstvakh dlya norm promezhutochnykh proizvodnykh na konechnom intervale”, Tr. Matem. in-ta AN SSSR, 156, 1980, 22–29 | Zbl