Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_8_a7, author = {J. R. Agachev and M. Yu. Pershagin}, title = {Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted {Sobolev} spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {80--85}, publisher = {mathdoc}, number = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/} }
TY - JOUR AU - J. R. Agachev AU - M. Yu. Pershagin TI - Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 80 EP - 85 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/ LA - ru ID - IVM_2017_8_a7 ER -
%0 Journal Article %A J. R. Agachev %A M. Yu. Pershagin %T Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 80-85 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/ %G ru %F IVM_2017_8_a7
J. R. Agachev; M. Yu. Pershagin. Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/
[1] Gabdulkhaev B. G., “Nekotorye voprosy teorii priblizhennykh metodov. II”, Izv. vuzov. Matem., 1968, no. 10, 21–29
[2] Agachev Yu. R., “Skhodimost obschego polinomialnogo proektsionnogo metoda resheniya nekorrektnykh integrodifferentsialnykh uravnenii”, Izv. vuzov. Matem., 2007, no. 8, 3–14
[3] Burenkov V. I., “O tochnykh postoyannykh v neravenstvakh dlya norm promezhutochnykh proizvodnykh na konechnom intervale”, Tr. Matem. in-ta AN SSSR, 156, 1980, 22–29 | Zbl