Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 80-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the general boundary-value problem for linear integro-differential equations, specified on a segment of the number line where the order of the internal differential operators is of higher order than that of the corresponding exterior differential operator. We prove well-posedness of this problem in the Hadamard sense in new pair of non-weighted Sobolev spaces.
Keywords: Sobolev space, integro-differential equation, general boundary-value problem, well-posedness.
@article{IVM_2017_8_a7,
     author = {J. R. Agachev and M. Yu. Pershagin},
     title = {Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted {Sobolev} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--85},
     publisher = {mathdoc},
     number = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/}
}
TY  - JOUR
AU  - J. R. Agachev
AU  - M. Yu. Pershagin
TI  - Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 80
EP  - 85
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/
LA  - ru
ID  - IVM_2017_8_a7
ER  - 
%0 Journal Article
%A J. R. Agachev
%A M. Yu. Pershagin
%T Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 80-85
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/
%G ru
%F IVM_2017_8_a7
J. R. Agachev; M. Yu. Pershagin. Well-posedness of conditionally correct integro-differential equations in new pair of non-weighted Sobolev spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2017_8_a7/

[1] Gabdulkhaev B. G., “Nekotorye voprosy teorii priblizhennykh metodov. II”, Izv. vuzov. Matem., 1968, no. 10, 21–29

[2] Agachev Yu. R., “Skhodimost obschego polinomialnogo proektsionnogo metoda resheniya nekorrektnykh integrodifferentsialnykh uravnenii”, Izv. vuzov. Matem., 2007, no. 8, 3–14

[3] Burenkov V. I., “O tochnykh postoyannykh v neravenstvakh dlya norm promezhutochnykh proizvodnykh na konechnom intervale”, Tr. Matem. in-ta AN SSSR, 156, 1980, 22–29 | Zbl