Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_8_a6, author = {I. I. Sharapudinov and T. I. Sharapudinov}, title = {Polynomials orthogonal in the {Sobolev} sense, generated by {Chebyshev} polynomials orthogornal on a mesh}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {67--79}, publisher = {mathdoc}, number = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a6/} }
TY - JOUR AU - I. I. Sharapudinov AU - T. I. Sharapudinov TI - Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogornal on a mesh JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 67 EP - 79 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_8_a6/ LA - ru ID - IVM_2017_8_a6 ER -
%0 Journal Article %A I. I. Sharapudinov %A T. I. Sharapudinov %T Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogornal on a mesh %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 67-79 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_8_a6/ %G ru %F IVM_2017_8_a6
I. I. Sharapudinov; T. I. Sharapudinov. Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogornal on a mesh. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 67-79. http://geodesic.mathdoc.fr/item/IVM_2017_8_a6/
[1] Iserles A., Koch P. E., Norsett S. P., Sanz-Serna J. M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | MR | Zbl
[2] Marcellan F., Alfaro M., Rezola M. L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131 | DOI | MR | Zbl
[3] Meijer H. G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | MR | Zbl
[4] Kwon K. H., Littlejohn L. L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 2 (1995), 289–303 | MR | Zbl
[5] Kwon K. H., Littlejohn L. L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28 (1998), 547–594 | DOI | MR | Zbl
[6] Marcellan F., Yuan Xu, On Sobolev orthogonal polynomials, 2014, 40 pp., arXiv: 1403.6249v1 [math.CA] | MR
[7] Sharapudinov I. I., “Smeshannye ryady po polinomam Chebysheva, ortogonalnym na ravnomernoi setke”, Matem. zametki, 78:3 (2005), 442–465 | DOI | Zbl
[8] Sharapudinov I. I., Sharapudinov T. I., “Smeshannye ryady po polinomam Yakobi i Chebysheva i ikh diskretizatsiya”, Matem. zametki, 88:1 (2010), 116–147 | DOI | Zbl
[9] Trefethen L. N., Spectral methods in Matlab, SIAM, Philadelphia, 2000 | MR | Zbl
[10] Trefethen L. N., Finite difference and spectral methods for ordinary and partial differential equation, Cornell University, 1996
[11] Magomed-Kasumov M. G., “Priblizhennoe reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem smeshannykh ryadov po sisteme Khaara”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly (27 yanvarya–3 fevralya 2016), 2016, 176–178
[12] Chebyshev P. L., “Ob interpolirovanii velichin ravnootstoyaschikh $(1875)$”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 66–87 | MR
[13] Sharapudinov I. I., Mnogochleny, ortogonalnye na diskretnykh setkakh, Izd-vo Dagestansk. gos. ped. un-ta, Makhachkala, 1997
[14] Sharapudinov I. I., “Ob asimptotike mnogochlenov Chebysheva, ortogonalnykh na konechnoi sisteme tochek”, Vestn. MGU. Ser. 1, 1 (1992), 29–35
[15] Sharapudinov T. I., “Approksimativnye svoistva smeshannykh ryadov po polinomam Chebysheva, ortogonalnym na ravnomernoi setke”, Vestn. Dagestansk. nauchn. tsentra RAN, 29 (2007), 12–23 | Zbl