Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_8_a2, author = {Sh. T. Karimov}, title = {On a method of solving the {Cauchy} problem for one-dimensional polywave equation with singular {Bessel} operator}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {27--41}, publisher = {mathdoc}, number = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a2/} }
TY - JOUR AU - Sh. T. Karimov TI - On a method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 27 EP - 41 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_8_a2/ LA - ru ID - IVM_2017_8_a2 ER -
%0 Journal Article %A Sh. T. Karimov %T On a method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 27-41 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_8_a2/ %G ru %F IVM_2017_8_a2
Sh. T. Karimov. On a method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 27-41. http://geodesic.mathdoc.fr/item/IVM_2017_8_a2/
[1] Bitsadze A. V., Izbrannye trudy, KBNTs RAN, Nalchik, 2012
[2] Zhegalov V. I., “Kraevaya zadacha dlya uravneniya smeshannogo tipa vysshego poryadka”, DAN SSSR, 136:2 (1962), 274–276
[3] Smirnov M. M., Modelnoe uravnenie smeshannogo tipa chetvertogo poryadka, Izd-vo LGU, L., 1972
[4] Meredov M. M., “O edinstvennosti resheniya kraevykh zadach dlya uravneniya smeshannogo tipa chetvertogo poryadka”, Izv. AN Turkm. SSR. Ser. fiz.-tekhn., khim. i geol. nauk, 1967, no. 4, 11–16
[5] Zhegalov V. I., “Ob odnom napravlenii v teorii uravnenii s chastnymi proizvodnymi”, Materialy Mezhdunarodn. nauchn. konf. “Kraevye zadachi dlya differentsialnykh uravnenii i analiticheskikh funktsii” (Kazan, 29 sentyabrya–1 oktyabrya 2014), Izd-vo Kazansk. matem. o-va, 13–15
[6] Sabitov K. B., “O polozhitelnosti resheniya neodnorodnogo uravneniya smeshannogo tipa vysshego poryadka”, Materialy Mezhdunarodn. nauchn. konf. “Kraevye zadachi dlya differentsialnykh uravnenii i analiticheskikh funktsii” (Kazan, 29 sentyabrya–1 oktyabrya 2014), Izd-vo Kazansk. matem. o-va, 2014, 64–67
[7] Galperin S. A., Kondrashov V. E., “Zadacha Koshi dlya differentsialnykh operatorov, raspadayuschikhsya na volnovye mnozhiteli”, Tr. MMO, 16, 1967, 109–136
[8] Aldashev S. A., “O zadache Koshi dlya operatorov, raspadayuschikhsya na mnozhiteli s osobennostyami”, Differents. uravneniya, 17:2 (1981), 247–255 | MR | Zbl
[9] Ivanov L. A., “Zadacha Koshi dlya nekotorykh operatorov s osobennostyami”, Differents. uravneniya, 18:6 (1982), 1020–1028 | Zbl
[10] Pulkin S. P., “Nekotorye kraevye zadachi dlya uravnenii $u_{xx}\pm u_{yy} + (p/x)u_x = 0$”, Uchen. zap. Kuibyshevsk. ped. in-ta, 21, Kuibyshev, 1958, 3–55
[11] Ilin V. A., Sadovnichii V. A., Sendov Bl. Kh., Matematicheskii analiz. Prodolzhenie kursa, Izd-vo MGU, M., 1987
[12] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[13] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973 | MR
[14] Karimov Sh. T., “Novye svoistva obobschennogo operatora Erdeii–Kobera i ikh prilozheniya”, DAN RUz, 2014, no. 5, 11–13
[15] Karimov Sh. T., “Multidimensional generalized Erdélyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients”, Fract. Calc. Appl. Anal., 18:4 (2015), 845–861 | DOI | MR | Zbl