On a method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 27-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Cauchy problem for an equation with singular Bessel operator. Unlike traditional methods to solve this problem, we apply Erdélyi–Kober fractional operator and find an explicit formula for the sought-for solution. We prove that the resulting formula is a unique classical solution to the problem.
Keywords: Cauchy problem, singular Bessel operator, Erdélyi–Kober operator.
Mots-clés : polywave equation
@article{IVM_2017_8_a2,
     author = {Sh. T. Karimov},
     title = {On a method of solving the {Cauchy} problem for one-dimensional polywave equation with singular {Bessel} operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--41},
     publisher = {mathdoc},
     number = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a2/}
}
TY  - JOUR
AU  - Sh. T. Karimov
TI  - On a method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 27
EP  - 41
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_8_a2/
LA  - ru
ID  - IVM_2017_8_a2
ER  - 
%0 Journal Article
%A Sh. T. Karimov
%T On a method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 27-41
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_8_a2/
%G ru
%F IVM_2017_8_a2
Sh. T. Karimov. On a method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 27-41. http://geodesic.mathdoc.fr/item/IVM_2017_8_a2/

[1] Bitsadze A. V., Izbrannye trudy, KBNTs RAN, Nalchik, 2012

[2] Zhegalov V. I., “Kraevaya zadacha dlya uravneniya smeshannogo tipa vysshego poryadka”, DAN SSSR, 136:2 (1962), 274–276

[3] Smirnov M. M., Modelnoe uravnenie smeshannogo tipa chetvertogo poryadka, Izd-vo LGU, L., 1972

[4] Meredov M. M., “O edinstvennosti resheniya kraevykh zadach dlya uravneniya smeshannogo tipa chetvertogo poryadka”, Izv. AN Turkm. SSR. Ser. fiz.-tekhn., khim. i geol. nauk, 1967, no. 4, 11–16

[5] Zhegalov V. I., “Ob odnom napravlenii v teorii uravnenii s chastnymi proizvodnymi”, Materialy Mezhdunarodn. nauchn. konf. “Kraevye zadachi dlya differentsialnykh uravnenii i analiticheskikh funktsii” (Kazan, 29 sentyabrya–1 oktyabrya 2014), Izd-vo Kazansk. matem. o-va, 13–15

[6] Sabitov K. B., “O polozhitelnosti resheniya neodnorodnogo uravneniya smeshannogo tipa vysshego poryadka”, Materialy Mezhdunarodn. nauchn. konf. “Kraevye zadachi dlya differentsialnykh uravnenii i analiticheskikh funktsii” (Kazan, 29 sentyabrya–1 oktyabrya 2014), Izd-vo Kazansk. matem. o-va, 2014, 64–67

[7] Galperin S. A., Kondrashov V. E., “Zadacha Koshi dlya differentsialnykh operatorov, raspadayuschikhsya na volnovye mnozhiteli”, Tr. MMO, 16, 1967, 109–136

[8] Aldashev S. A., “O zadache Koshi dlya operatorov, raspadayuschikhsya na mnozhiteli s osobennostyami”, Differents. uravneniya, 17:2 (1981), 247–255 | MR | Zbl

[9] Ivanov L. A., “Zadacha Koshi dlya nekotorykh operatorov s osobennostyami”, Differents. uravneniya, 18:6 (1982), 1020–1028 | Zbl

[10] Pulkin S. P., “Nekotorye kraevye zadachi dlya uravnenii $u_{xx}\pm u_{yy} + (p/x)u_x = 0$”, Uchen. zap. Kuibyshevsk. ped. in-ta, 21, Kuibyshev, 1958, 3–55

[11] Ilin V. A., Sadovnichii V. A., Sendov Bl. Kh., Matematicheskii analiz. Prodolzhenie kursa, Izd-vo MGU, M., 1987

[12] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[13] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973 | MR

[14] Karimov Sh. T., “Novye svoistva obobschennogo operatora Erdeii–Kobera i ikh prilozheniya”, DAN RUz, 2014, no. 5, 11–13

[15] Karimov Sh. T., “Multidimensional generalized Erdélyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients”, Fract. Calc. Appl. Anal., 18:4 (2015), 845–861 | DOI | MR | Zbl