The extension problem for functions with zero weighted spherical means
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 17-26
Voir la notice de l'article provenant de la source Math-Net.Ru
We study functions on a sphere with pricked point having zero integrals with a given weight over all admissible “hemispheres”. We find a condition under which a point is the removable set for such class of functions. We show that this condition cannot be dropped or substantially weakened.
Keywords:
spherical harmonics, generalized Funk transform, mean periodicity.
@article{IVM_2017_8_a1,
author = {Vit. V. Volchkov and N. P. Volchkova},
title = {The extension problem for functions with zero weighted spherical means},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {17--26},
publisher = {mathdoc},
number = {8},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a1/}
}
TY - JOUR AU - Vit. V. Volchkov AU - N. P. Volchkova TI - The extension problem for functions with zero weighted spherical means JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 17 EP - 26 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_8_a1/ LA - ru ID - IVM_2017_8_a1 ER -
Vit. V. Volchkov; N. P. Volchkova. The extension problem for functions with zero weighted spherical means. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 17-26. http://geodesic.mathdoc.fr/item/IVM_2017_8_a1/