Second boundary-value problem in a half-strip for equation of parabolic type with the Bessel operator and Riemann--Liouville derivative
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 84-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the second boundary-value problem in the half-strip for parabolic equation with the Bessel operator and Riemann–Liouville partial derivative. In terms of the integral transform with Wright function in the kernel, we find the representation of a solution in the case of zero edge condition. We prove the uniqueness of a solution in the class of functions satisfying an analog of the Tikhonov condition.
Keywords: differential equation with partial derivatives, Bessel operator, modified Bessel function, fractional order derivative, Riemann–Liouville operator, Fox function, Wright function, integral transform with Wright function in kernel, uniqueness of solution, Tikhonov condition.
Mots-clés : parabolic equation
@article{IVM_2017_7_a9,
     author = {F. G. Khushtova},
     title = {Second boundary-value problem in a half-strip for equation of parabolic type with the {Bessel} operator and {Riemann--Liouville} derivative},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--93},
     publisher = {mathdoc},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_7_a9/}
}
TY  - JOUR
AU  - F. G. Khushtova
TI  - Second boundary-value problem in a half-strip for equation of parabolic type with the Bessel operator and Riemann--Liouville derivative
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 84
EP  - 93
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_7_a9/
LA  - ru
ID  - IVM_2017_7_a9
ER  - 
%0 Journal Article
%A F. G. Khushtova
%T Second boundary-value problem in a half-strip for equation of parabolic type with the Bessel operator and Riemann--Liouville derivative
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 84-93
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_7_a9/
%G ru
%F IVM_2017_7_a9
F. G. Khushtova. Second boundary-value problem in a half-strip for equation of parabolic type with the Bessel operator and Riemann--Liouville derivative. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 84-93. http://geodesic.mathdoc.fr/item/IVM_2017_7_a9/

[1] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995

[2] Pskhu A. B., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[3] Tersenov S. A., Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, M., 1985 | MR

[4] Pagani C. D., “On the parabolic equation $\mathrm{sgn}(x)x^p u_y-u_{xx}=0$ and a related one”, Ann. Mat. Pura Appl. (4), 99:4 (1974), 333–339 | DOI | MR

[5] Gorkov Yu. P., “Postroenie fundamentalnogo resheniya parabolicheskogo uravneniya s vyrozhdeniem”, Vychisl. metody i programmirov., 6 (2005), 66–70

[6] Arena O., “On a degenerate elliptic-parabolic equation”, Comm. Partial Diff. Equat., 3:11 (1978), 1007–1040 | DOI | MR | Zbl

[7] Mainardi F., “The time fractional diffusion-wave equation”, Radiophys. and Quant. Electronics, 38:1–2 (1995), 13–24 | MR

[8] Mainardi F., “The fundamental solutions for the fractional diffusion-wave equation”, Appl. Math. Lett., 9:6 (1996), 23–28 | DOI | MR | Zbl

[9] Pskhu A. V., “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya”, Izv. RAN. Ser. matem., 73:2 (2009), 141–182 | DOI | MR | Zbl

[10] Gekkieva S. Kh., “Kraevaya zadacha dlya obobschennogo uravneniya perenosa s drobnoi proizvodnoi v polubeskonechnoi oblasti”, Izv. Kabardino-Balkarsk. nauchn. tsentra RAN, 1:8 (2002), 6–8

[11] Metzler R., Glöckle W. G., Nonnenmacher T. F., “Fractional model equation for anomalous diffusion”, Physica A, 211 (1994), 13–24 | DOI | MR

[12] Metzler R., Klafter J., “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, Physica A: Math. Gen., 37 (2004), R161–R208 | DOI | MR | Zbl

[13] Uchaikin V. V., “Anizotropiya kosmicheskikh luchei v drobno-differentsialnykh modelyakh anomalnoi diffuzii”, ZhETF, 143:6 (2013), 1039–1047

[14] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers, v. I, Background and Theory, HEP/Springer, 2013 | MR

[15] Khushtova F. G., “Pervaya kraevaya zadacha v polupolose dlya vyrozhdayuschegosya uravneniya parabolicheskogo tipa s drobnoi proizvodnoi”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodn. akad. nauk, 17:3 (2015), 60–69 | Zbl

[16] Kuznetsov D. S., Spetsialnye funktsii, Vyssh. shk., M., 1965

[17] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, v. 2, Nauka, M., 1983

[18] Gorenflo R., Luchko Y., Mainardi F., “Analytical properties and applications of the Wright function”, Fract. Calc. Appl. Anal., 2:4 (1999), 383–414 | MR | Zbl

[19] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dop. gl., v. 3, Nauka, M., 1986

[20] Kilbas A. A., Saigo M., $H$-Transform. Theory and applications, D.C. Chapman and Hall/CRC, Boca Raton–London–New York–Washington, 2004 | MR

[21] Mathai A. M., Saxena R. K., Haubold H. J., The $H$-function. Theory and applications, Springer, New York, 2010 | MR | Zbl

[22] Marichev O. I., Metod vychisleniya integralov ot spetsialnykh funktsii (teoriya i tablitsy formul), Nauka i tekhnika, Mn., 1978 | MR

[23] Khushtova F. G., “Fundamentalnoe reshenie modelnogo uravneniya anomalnoi diffuzii drobnogo poryadka”, Vestn. Samarsk. gos. tenkh. un-ta. Ser fiz.-matem. nauk, 19:4 (2015), 722–735 | DOI