Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_7_a9, author = {F. G. Khushtova}, title = {Second boundary-value problem in a half-strip for equation of parabolic type with the {Bessel} operator and {Riemann--Liouville} derivative}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {84--93}, publisher = {mathdoc}, number = {7}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_7_a9/} }
TY - JOUR AU - F. G. Khushtova TI - Second boundary-value problem in a half-strip for equation of parabolic type with the Bessel operator and Riemann--Liouville derivative JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 84 EP - 93 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_7_a9/ LA - ru ID - IVM_2017_7_a9 ER -
%0 Journal Article %A F. G. Khushtova %T Second boundary-value problem in a half-strip for equation of parabolic type with the Bessel operator and Riemann--Liouville derivative %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 84-93 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_7_a9/ %G ru %F IVM_2017_7_a9
F. G. Khushtova. Second boundary-value problem in a half-strip for equation of parabolic type with the Bessel operator and Riemann--Liouville derivative. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 84-93. http://geodesic.mathdoc.fr/item/IVM_2017_7_a9/
[1] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995
[2] Pskhu A. B., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005
[3] Tersenov S. A., Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, M., 1985 | MR
[4] Pagani C. D., “On the parabolic equation $\mathrm{sgn}(x)x^p u_y-u_{xx}=0$ and a related one”, Ann. Mat. Pura Appl. (4), 99:4 (1974), 333–339 | DOI | MR
[5] Gorkov Yu. P., “Postroenie fundamentalnogo resheniya parabolicheskogo uravneniya s vyrozhdeniem”, Vychisl. metody i programmirov., 6 (2005), 66–70
[6] Arena O., “On a degenerate elliptic-parabolic equation”, Comm. Partial Diff. Equat., 3:11 (1978), 1007–1040 | DOI | MR | Zbl
[7] Mainardi F., “The time fractional diffusion-wave equation”, Radiophys. and Quant. Electronics, 38:1–2 (1995), 13–24 | MR
[8] Mainardi F., “The fundamental solutions for the fractional diffusion-wave equation”, Appl. Math. Lett., 9:6 (1996), 23–28 | DOI | MR | Zbl
[9] Pskhu A. V., “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya”, Izv. RAN. Ser. matem., 73:2 (2009), 141–182 | DOI | MR | Zbl
[10] Gekkieva S. Kh., “Kraevaya zadacha dlya obobschennogo uravneniya perenosa s drobnoi proizvodnoi v polubeskonechnoi oblasti”, Izv. Kabardino-Balkarsk. nauchn. tsentra RAN, 1:8 (2002), 6–8
[11] Metzler R., Glöckle W. G., Nonnenmacher T. F., “Fractional model equation for anomalous diffusion”, Physica A, 211 (1994), 13–24 | DOI | MR
[12] Metzler R., Klafter J., “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, Physica A: Math. Gen., 37 (2004), R161–R208 | DOI | MR | Zbl
[13] Uchaikin V. V., “Anizotropiya kosmicheskikh luchei v drobno-differentsialnykh modelyakh anomalnoi diffuzii”, ZhETF, 143:6 (2013), 1039–1047
[14] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers, v. I, Background and Theory, HEP/Springer, 2013 | MR
[15] Khushtova F. G., “Pervaya kraevaya zadacha v polupolose dlya vyrozhdayuschegosya uravneniya parabolicheskogo tipa s drobnoi proizvodnoi”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodn. akad. nauk, 17:3 (2015), 60–69 | Zbl
[16] Kuznetsov D. S., Spetsialnye funktsii, Vyssh. shk., M., 1965
[17] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, v. 2, Nauka, M., 1983
[18] Gorenflo R., Luchko Y., Mainardi F., “Analytical properties and applications of the Wright function”, Fract. Calc. Appl. Anal., 2:4 (1999), 383–414 | MR | Zbl
[19] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dop. gl., v. 3, Nauka, M., 1986
[20] Kilbas A. A., Saigo M., $H$-Transform. Theory and applications, D.C. Chapman and Hall/CRC, Boca Raton–London–New York–Washington, 2004 | MR
[21] Mathai A. M., Saxena R. K., Haubold H. J., The $H$-function. Theory and applications, Springer, New York, 2010 | MR | Zbl
[22] Marichev O. I., Metod vychisleniya integralov ot spetsialnykh funktsii (teoriya i tablitsy formul), Nauka i tekhnika, Mn., 1978 | MR
[23] Khushtova F. G., “Fundamentalnoe reshenie modelnogo uravneniya anomalnoi diffuzii drobnogo poryadka”, Vestn. Samarsk. gos. tenkh. un-ta. Ser fiz.-matem. nauk, 19:4 (2015), 722–735 | DOI