Nonlocal problem for degenerating hyperbolic equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 50-56
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate a nonlocal problem for a degenerating hyperbolic equation in the domain, which is bounded by the characteristics of the equation. Boundary conditions include a linear combination of operators of fractional in the sense of Riemann-Liouville integrodifferentiation. The uniqueness of solution of the problem is proved by a modified Tricomi method. The existence is reduced to the equivalent of the solvability of a singular integral equation with Cauchy kernel or Fredholm integral equation of the second kind.
Keywords:
nonlocal problem, operators of fractional integrodifferentiation, Cauchy problem, singular equation, Fredholm integral equation.
@article{IVM_2017_7_a5,
author = {O. A. Repin and S. K. Kumykova},
title = {Nonlocal problem for degenerating hyperbolic equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {50--56},
publisher = {mathdoc},
number = {7},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_7_a5/}
}
O. A. Repin; S. K. Kumykova. Nonlocal problem for degenerating hyperbolic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 50-56. http://geodesic.mathdoc.fr/item/IVM_2017_7_a5/