Existence of eigenvalues of operators acting in $L^2(R^n)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 30-40
Voir la notice de l'article provenant de la source Math-Net.Ru
We write out conditions that help to prove the existence of eigenvalues and characteristic values for operator $F(D)-C(\lambda): L^{2}(R^{m})\to L^{2}(R^{m})$, where $F(D)$ is a pseudodifferential operator with a symbol $F(i\xi)$ and $C(\lambda): L^{2}(R^{m}) \to L^{2}(R^{m})$ is a linear continuous operator.
Keywords:
pseudodifferential operator, characteristic values, eigenvalues.
@article{IVM_2017_7_a3,
author = {V. S. Mokeychev},
title = {Existence of eigenvalues of operators acting in $L^2(R^n)$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {30--40},
publisher = {mathdoc},
number = {7},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_7_a3/}
}
V. S. Mokeychev. Existence of eigenvalues of operators acting in $L^2(R^n)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 30-40. http://geodesic.mathdoc.fr/item/IVM_2017_7_a3/