Uniqueness theorem for linear elliptic equation of the second order with constant coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 14-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The interior uniqueness theorem for analytic functions was generalized by M. B. Balk to the case of polyanalytic functions of order $n$. He proved that if the zeros of a polyanalytic function have an accumulation point of order $n$, then this function is identically zero. In this paper the interior uniqueness theorem is generalized to the solution of a linear homogeneous second order differential equation of elliptic type with constant coefficients.
Mots-clés : elliptic equation
Keywords: uniqueness theorem.
@article{IVM_2017_7_a1,
     author = {I. A. Bikchantaev},
     title = {Uniqueness theorem for linear elliptic equation of the second order with constant coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--18},
     publisher = {mathdoc},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_7_a1/}
}
TY  - JOUR
AU  - I. A. Bikchantaev
TI  - Uniqueness theorem for linear elliptic equation of the second order with constant coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 14
EP  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_7_a1/
LA  - ru
ID  - IVM_2017_7_a1
ER  - 
%0 Journal Article
%A I. A. Bikchantaev
%T Uniqueness theorem for linear elliptic equation of the second order with constant coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 14-18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_7_a1/
%G ru
%F IVM_2017_7_a1
I. A. Bikchantaev. Uniqueness theorem for linear elliptic equation of the second order with constant coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 14-18. http://geodesic.mathdoc.fr/item/IVM_2017_7_a1/

[1] Bikchantaev I. A., “O mnozhestvakh edinstvennosti dlya ellipticheskogo uravneniya s postoyannymi koeffitsientami”, Differents. uravneniya, 4:2 (2011), 278–282

[2] Bikchantaev I. A., “Ob odnoi vnutrennei teoreme edinstvennosti dlya lineinogo ellipticheskogo uravneniya vtorogo poryadka s postoyannymi koeffitsientami”, Izv. vuzov. Matem., 2015, no. 5, 17–21 | Zbl

[3] Balk M. B., Polyanalytic functions, Akademie Verlag, Berlin, 1991 | MR | Zbl

[4] Gonchar A. A., Havin V. P., Nikolski N. K. (Eds.), Complex analysis I. Entire and meromorphic functions, polyanalytic functions and their generalizations, Springer-Verlag, Berlin–Heidelberg, 1997 | MR | Zbl

[5] Bikchantaev I. A., “Nekotorye kraevye zadachi dlya odnogo ellipticheskogo uravneniya”, DAN SSSR, 209:5 (1973), 1013–1016

[6] Zuev M. F., “K teoremam edinstvennosti dlya metaanaliticheskikh funktsii”, Smolensk. matem. sb., 1969, no. 2, 54–59

[7] Sharma Dzh. N., Singkh K., Uravneniya v chastnykh proizvodnykh dlya inzhenerov, Tekhnosfera, M., 2002

[8] Hörmander L., “Uniqueness theorems for second order elliptic differential equations”, Comm. Partial Diff. Equat., 8:1 (1983), 21–64 | DOI | MR | Zbl

[9] Meshkov V. Z., “Teorema edinstvennosti dlya ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 129:3 (1986), 386–396 | MR