Necessary and sufficient conditions for power convergence rate of approximations in Tikhonov's scheme for solving ill-posed optimization problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a rate of convergence of estimates for approximations generated by Tikhonov's scheme for solving ill-posed optimization problems with smooth functionals under a structural nonlinearity condition in a Hilbert space, in the cases of exact and noisy input data. In the noise-free case, we prove that the power source representation of the desired solution is close to a necessary and sufficient condition for the power convergence estimate having the same exponent with respect to the regularization parameter. In the presence of a noise, we give a parameter choice rule that leads for Tikhonov's scheme to a power accuracy estimate with respect to the noise level.
Keywords: ill-posed optimization problem, Hilbert space, Tikhonov's scheme, rate of convergence, sourcewise representability condition.
@article{IVM_2017_6_a6,
     author = {M. Yu. Kokurin},
     title = {Necessary and sufficient conditions for power convergence rate of approximations in {Tikhonov's} scheme for solving ill-posed optimization problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--69},
     publisher = {mathdoc},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_6_a6/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Necessary and sufficient conditions for power convergence rate of approximations in Tikhonov's scheme for solving ill-posed optimization problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 60
EP  - 69
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_6_a6/
LA  - ru
ID  - IVM_2017_6_a6
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Necessary and sufficient conditions for power convergence rate of approximations in Tikhonov's scheme for solving ill-posed optimization problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 60-69
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_6_a6/
%G ru
%F IVM_2017_6_a6
M. Yu. Kokurin. Necessary and sufficient conditions for power convergence rate of approximations in Tikhonov's scheme for solving ill-posed optimization problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 60-69. http://geodesic.mathdoc.fr/item/IVM_2017_6_a6/

[1] Vasilev F. P., Metody resheniya ekstremalnykh zadach. Zadachi minimizatsii v funktsionalnykh prostranstvakh, regulyarizatsiya, approksimatsiya, Nauka, M., 1981

[2] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka. Fizmatlit, M., 1995

[3] Engl H. W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer, Dordrecht, 2000 | MR

[4] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002

[5] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989

[6] Tautenhahn U., “On the method of Lavrentiev regularization for nonlinear ill-posed problems”, Inverse Problems, 18 (2002), 191–207 | DOI | MR | Zbl

[7] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980

[8] Kokurin M. Yu., “Usloviya istokopredstavimosti i stepennye otsenki skorosti skhodimosti v skheme Tikhonova dlya resheniya nekorrektnykh ekstremalnykh zadach”, Izv. vuzov. Matem., 2014, no. 7, 72–82

[9] Kokurin M. M., “Neobkhodimye i dostatochnye usloviya stepennoi skhodimosti metoda kvaziobrascheniya i raznostnykh metodov resheniya nekorrektnoi zadachi Koshi v usloviyakh tochnykh dannykh”, Zhurn. vychisl. matem. i matem. fiz., 55:12 (2015), 2027–2041 | DOI | Zbl