Marcinkiewicz exponents and a boundary-value jump problem for Beltrami equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 44-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Marcinkiewicz exponents that were introduced by author before are applied here to solving boundary value jump problem on non-rectifiable curve for one special case of the Beltrami equation.
Keywords: Marcinkiewicz exponent, boundary-value problem, Riemann problem, Beltrami equation.
Mots-clés : fractal, non-rectifiable curve
@article{IVM_2017_6_a4,
     author = {D. B. Katz},
     title = {Marcinkiewicz exponents and a boundary-value jump problem for {Beltrami} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--51},
     publisher = {mathdoc},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_6_a4/}
}
TY  - JOUR
AU  - D. B. Katz
TI  - Marcinkiewicz exponents and a boundary-value jump problem for Beltrami equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 44
EP  - 51
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_6_a4/
LA  - ru
ID  - IVM_2017_6_a4
ER  - 
%0 Journal Article
%A D. B. Katz
%T Marcinkiewicz exponents and a boundary-value jump problem for Beltrami equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 44-51
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_6_a4/
%G ru
%F IVM_2017_6_a4
D. B. Katz. Marcinkiewicz exponents and a boundary-value jump problem for Beltrami equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 44-51. http://geodesic.mathdoc.fr/item/IVM_2017_6_a4/

[1] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR

[2] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977 | MR

[3] Polozhii G. N., Teoriya i primenenie $p$-analiticheskikh i $(p,q)$-analiticheskikh funktsii. Obobschenie teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauk. dumka, Kiev, 1973 | MR

[4] Tungatarov A. B., “Svoistva odnogo integralnogo operatora v klassakh summiruemykh funktsii”, Izv. AN Kazakhsk. SSR. Ser. fiz.-matem., 132:5 (1985), 58–62

[5] Tungatarov A. B., “O prilozhenii nekotorykh integralnykh operatorov v teorii obobschennykh analiticheskikh funktsii”, Izv. AN Kazakhsk. SSR. Ser. fiz.-matem., 134:1 (1987), 51–54 | MR | Zbl

[6] Abreu-Blaya R., Bory-Reyes J., Pena-Pena D., “On the jump problem for $\beta$-analytic functions”, Complex Variables and elliptic equat., 51:8–11 (2006), 763–775 | DOI | MR | Zbl

[7] Abreu-Blaya R., Bory-Reyes J., Vilaire J.-M., “A jump problem for $\beta$-analytic functions in domains with fractal boundaries”, Revista Matem. Complutense, 23 (2010), 105–111 | DOI | MR | Zbl

[8] Abreu-Blaya R., Bory-Reyes J., Vilaire J.-M., “The Riemann boundary value problem for $\beta$-analytic functions over $D$-summable closed curves”, International J. of Pure and Appl. Math., 75:4 (2012), 441–453

[9] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[10] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1962

[11] Lu Jian-Ke, Boundary value problems for analytic functions, World Scientific, Singapore, 1993 | MR | Zbl

[12] Kats B. A., “Zadacha Rimana na zamknutoi zhordanovoi krivoi”, Izv. vuzov. Matem., 1984, no. 3, 68–80

[13] Kats B. A., “Zadacha Rimana na razomknutoi zhordanovoi krivoi”, Izv. vuzov. Matem., 1984, no. 12, 30–38

[14] Kats B. A., “The Riemann boundary value problem on non-rectifiable curves and related questions”, Complex Variables and Elliptic Equat.: An Int. J., 59:8 (2014), 1053–1069 | DOI | MR | Zbl

[15] Falconer K. J., Fractal geometry, Wiley and Sons, Chichester, 2014 | MR | Zbl

[16] Tricot C., Curves and fractal dimension, Springer-Verlag, New York, 1995 | MR | Zbl

[17] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14 (1959), 3–86 | Zbl

[18] Harrison J., Norton A., “The Gauss–Green theorem for fractal boundaries”, Duke Math. J., 67:3 (1992), 575–588 | DOI | MR | Zbl

[19] Kats D. B., “Pokazateli Martsinkevicha i ikh prilozheniya v kraevykh zadachakh”, Izv. vuzov. Matem., 2014, no. 3, 68–71

[20] Kats D. B., “Lokalnye pokazateli Martsinkevicha i ikh prilozhenie”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 156, no. 4, 2014, 31–38 | Zbl

[21] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[22] Kats D. B., “Novye metricheskie kharakteristiki nespryamlyaemykh krivykh i ikh prilozheniya”, Sib. matem. zhurn., 57:2 (2016), 364–372 | MR | Zbl

[23] Markushevich A. I., Izbrannye glavy teorii analiticheskikh funktsii, Nauka, M., 1976 | MR

[24] Dolzhenko E. P., “O «stiranii» osobennostei analiticheskikh funktsii”, UMN, 18:4 (1963), 135–142 | MR | Zbl

[25] Samko N. G., Samko S. G., Vakulov B. G., “Weighted Sobolev theorem in Lebesgue spaces with variable exponent”, corrigendum, Armenian J. Math., 3:2 (2010), 92–97 | MR | Zbl

[26] Karlovich A. Yu., Spitkovsky I. M., “The Cauchy singular integral operator with weighted variable Lebesgue spaces”, Operator Theory: Advances and Appl., 236 (2013), 275–291 | DOI | MR