Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_6_a4, author = {D. B. Katz}, title = {Marcinkiewicz exponents and a boundary-value jump problem for {Beltrami} equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {44--51}, publisher = {mathdoc}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_6_a4/} }
D. B. Katz. Marcinkiewicz exponents and a boundary-value jump problem for Beltrami equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 44-51. http://geodesic.mathdoc.fr/item/IVM_2017_6_a4/
[1] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR
[2] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977 | MR
[3] Polozhii G. N., Teoriya i primenenie $p$-analiticheskikh i $(p,q)$-analiticheskikh funktsii. Obobschenie teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauk. dumka, Kiev, 1973 | MR
[4] Tungatarov A. B., “Svoistva odnogo integralnogo operatora v klassakh summiruemykh funktsii”, Izv. AN Kazakhsk. SSR. Ser. fiz.-matem., 132:5 (1985), 58–62
[5] Tungatarov A. B., “O prilozhenii nekotorykh integralnykh operatorov v teorii obobschennykh analiticheskikh funktsii”, Izv. AN Kazakhsk. SSR. Ser. fiz.-matem., 134:1 (1987), 51–54 | MR | Zbl
[6] Abreu-Blaya R., Bory-Reyes J., Pena-Pena D., “On the jump problem for $\beta$-analytic functions”, Complex Variables and elliptic equat., 51:8–11 (2006), 763–775 | DOI | MR | Zbl
[7] Abreu-Blaya R., Bory-Reyes J., Vilaire J.-M., “A jump problem for $\beta$-analytic functions in domains with fractal boundaries”, Revista Matem. Complutense, 23 (2010), 105–111 | DOI | MR | Zbl
[8] Abreu-Blaya R., Bory-Reyes J., Vilaire J.-M., “The Riemann boundary value problem for $\beta$-analytic functions over $D$-summable closed curves”, International J. of Pure and Appl. Math., 75:4 (2012), 441–453
[9] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977
[10] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1962
[11] Lu Jian-Ke, Boundary value problems for analytic functions, World Scientific, Singapore, 1993 | MR | Zbl
[12] Kats B. A., “Zadacha Rimana na zamknutoi zhordanovoi krivoi”, Izv. vuzov. Matem., 1984, no. 3, 68–80
[13] Kats B. A., “Zadacha Rimana na razomknutoi zhordanovoi krivoi”, Izv. vuzov. Matem., 1984, no. 12, 30–38
[14] Kats B. A., “The Riemann boundary value problem on non-rectifiable curves and related questions”, Complex Variables and Elliptic Equat.: An Int. J., 59:8 (2014), 1053–1069 | DOI | MR | Zbl
[15] Falconer K. J., Fractal geometry, Wiley and Sons, Chichester, 2014 | MR | Zbl
[16] Tricot C., Curves and fractal dimension, Springer-Verlag, New York, 1995 | MR | Zbl
[17] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14 (1959), 3–86 | Zbl
[18] Harrison J., Norton A., “The Gauss–Green theorem for fractal boundaries”, Duke Math. J., 67:3 (1992), 575–588 | DOI | MR | Zbl
[19] Kats D. B., “Pokazateli Martsinkevicha i ikh prilozheniya v kraevykh zadachakh”, Izv. vuzov. Matem., 2014, no. 3, 68–71
[20] Kats D. B., “Lokalnye pokazateli Martsinkevicha i ikh prilozhenie”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 156, no. 4, 2014, 31–38 | Zbl
[21] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973
[22] Kats D. B., “Novye metricheskie kharakteristiki nespryamlyaemykh krivykh i ikh prilozheniya”, Sib. matem. zhurn., 57:2 (2016), 364–372 | MR | Zbl
[23] Markushevich A. I., Izbrannye glavy teorii analiticheskikh funktsii, Nauka, M., 1976 | MR
[24] Dolzhenko E. P., “O «stiranii» osobennostei analiticheskikh funktsii”, UMN, 18:4 (1963), 135–142 | MR | Zbl
[25] Samko N. G., Samko S. G., Vakulov B. G., “Weighted Sobolev theorem in Lebesgue spaces with variable exponent”, corrigendum, Armenian J. Math., 3:2 (2010), 92–97 | MR | Zbl
[26] Karlovich A. Yu., Spitkovsky I. M., “The Cauchy singular integral operator with weighted variable Lebesgue spaces”, Operator Theory: Advances and Appl., 236 (2013), 275–291 | DOI | MR