On solving the problems of stability by Lyapunov's direct method
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 33-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider problems of stability and instability of the trivial solution of non-autonomous systems of differential equations. We suggest new theorems of Lyapunov's direct method with the use of semi-definite auxiliary functions. The idea is based on the use of the additional function that evaluates the rate of convergence of the solutions to the set, where Lyapunov's function vanishes. We formulate theorems on the non-asymptotic stability and instability. The results are adduced by the examples, where we give a comparison with known results.
Keywords: system of differential equations, equilibrium, stability, Lyapunov's function.
@article{IVM_2017_6_a3,
     author = {B. S. Kalitine},
     title = {On solving the problems of stability by {Lyapunov's} direct method},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--43},
     publisher = {mathdoc},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_6_a3/}
}
TY  - JOUR
AU  - B. S. Kalitine
TI  - On solving the problems of stability by Lyapunov's direct method
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 33
EP  - 43
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_6_a3/
LA  - ru
ID  - IVM_2017_6_a3
ER  - 
%0 Journal Article
%A B. S. Kalitine
%T On solving the problems of stability by Lyapunov's direct method
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 33-43
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_6_a3/
%G ru
%F IVM_2017_6_a3
B. S. Kalitine. On solving the problems of stability by Lyapunov's direct method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 33-43. http://geodesic.mathdoc.fr/item/IVM_2017_6_a3/

[1] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950

[2] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980

[3] Vasilev S. N., “Metod sravneniya v analize sistem. 2”, Differents. uravneniya, 18:6 (1982), 938–947 | MR | Zbl

[4] Yoshizawa T., Stability theory by Liapunov`s second method, Math. Soc. Japan, 1966 | MR

[5] Barbashin E. A., Funktsii Lyapunova, Nauka, M., 1970

[6] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, GIFML, M., 1959

[7] Matrosov V. M., “Ob ustoichivosti dvizheniya”, PMM, 26:5 (1962), 885–895 | Zbl

[8] Kalitin B. S., “Ustoichivost neavtonomnykh dinamicheskikh sistem”, Aktualnye zadachi teorii dinamicheskikh sistem upravleniya, IM AN BSSR, Minsk, 1989, 37–46 | MR

[9] Kalitin B. S., Ustoichivost neavtonomnykh differentsialnykh uravnenii, BGU, Minsk, 2013

[10] Kalitin B. S., “Neustoichivost zamknutykh invariantnykh mnozhestv poludinamicheskikh sistem. Metod znakopostoyannykh funktsii Lyapunova”, Matem. zametki, 85:3 (2009), 382–394 | DOI | MR | Zbl

[11] Pavlikov S. V., Metod funktsionalov Lyapunova v zadachakh ustoichivosti i stabilizatsii, Monografiya, In-t upravleniya, Naberezhnye Chelny, 2010

[12] Kalitin B. S., Shabur R., “Metod znakopostoyannykh funktsii Lyapunova dlya sistem neavtonomnykh differentsialnykh uravnenii”, Izv. vuzov. Matem., 2012, no. 5, 28–39 | Zbl

[13] Kalitin B. S., O problemakh ustoichivosti neavtonomnykh differentsialnykh uravnenii (metod znakopostoyannykh funktsii Lyapunova), Lambert Academic Publishing, Saarbrücken, 2015

[14] Seibert P., “On stability relative a set and to the whole space”, Proc. of the 5th Int. Conf. on Nonlin. oscilations (Kiev, 1969), v. 2, Izdat. Inst. Mat. Akad. Nauk USSR, 1970, 448–457

[15] Seibert P, Florio J. S., “On the reduction to a subspace of stability properties of systems in metric space”, Annali di Matem. pura ed applicata (IV), CLXIX (1995), 291–320 | DOI | MR | Zbl

[16] Kalitin B. S., “K zadache Florio–Seiberta”, Differents. uravneniya, 25:4 (1989), 727–729 | Zbl

[17] Cheban D. N., Kalitine B. S., “On the stability of gradient-like systems”, International J. Evolution Equat., 9:2 (2014), 151–166 | MR | Zbl