On canonical almost geodesic mappings which preserve the Weyl projective tensor
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a partial case of canonical almost geodesic mappings of the first type of spaces with affine connection that preserve Weyl projective curvature tensor and certain other tensors. Main equations under consideration are reduced to a closed Cauchy type in covariant derivatives. Therefore a general solution to these equations depends on a finite number of constants. We submit an example of above mappings between flat spaces. We establish that projective Euclidean and equiaffine spaces form closed classes of spaces with respect to these mappings.
Keywords: canonical almost geodesic mappings of the first type, space with affine connection, Weyl projective curvature tensor.
@article{IVM_2017_6_a0,
     author = {V. E. Berezovskii and J. Mike\v{s} and H. Chud\'a and O. Y. Chepurnaya},
     title = {On canonical almost geodesic mappings which preserve the {Weyl} projective tensor},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_6_a0/}
}
TY  - JOUR
AU  - V. E. Berezovskii
AU  - J. Mikeš
AU  - H. Chudá
AU  - O. Y. Chepurnaya
TI  - On canonical almost geodesic mappings which preserve the Weyl projective tensor
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 3
EP  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_6_a0/
LA  - ru
ID  - IVM_2017_6_a0
ER  - 
%0 Journal Article
%A V. E. Berezovskii
%A J. Mikeš
%A H. Chudá
%A O. Y. Chepurnaya
%T On canonical almost geodesic mappings which preserve the Weyl projective tensor
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 3-8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_6_a0/
%G ru
%F IVM_2017_6_a0
V. E. Berezovskii; J. Mikeš; H. Chudá; O. Y. Chepurnaya. On canonical almost geodesic mappings which preserve the Weyl projective tensor. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 3-8. http://geodesic.mathdoc.fr/item/IVM_2017_6_a0/

[1] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya prostranstv affinnoi svyaznosti i rimanovykh prostranstv”, DAN SSSR, 151:4 (1963), 781–782 | Zbl

[2] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979

[3] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya affinno-svyaznykh i rimanovykh prostranstv”, Itogi nauki i tekhn. Ser. Probl. geom., 13, VINITI, M., 1982, 3–26

[4] Mikeš J., “Holomorphically projective mappings and their generalizations”, J. Math. Sci., New York, 89:3 (1998), 1334–1353 | DOI | MR | Zbl

[5] Berezovskii V. E., Mikesh I., “Pochti geodezicheskie otobrazheniya prostranstv affinnoi svyaznosti”, Itogi nauki i tekhn. Ser. Sovremen. matem. i ee prilozh., 126, 2013, 62–95

[6] Mikeš J., et al., Differential geometry of special mappings, Palacký Univ. Press, Olomouc, 2015 | MR | Zbl

[7] Berezovski V., Mikeš J., “On a classification of almost geodesic mappings of affine connection spaces”, Acta Univ. Palacký, Olomouc, Math., 35 (1996), 21–24 | MR | Zbl

[8] Berezovskii V. E., Mikesh I., “O kanonicheskikh pochti geodezicheskikh otobrazheniyakh pervogo tipa prostranstv affinnoi svyaznosti”, Izv. vuzov. Matem., 2014, no. 2, 3–8

[9] Berezovski V., Mikeš J., Vanžurová A., “Fundamental PDE's of the canonical almost geodesic mappings of type $\widetilde\pi_1$”, Bull. Malays. Math. Sci. Soc. (2), 37:3 (2014), 647–659 | MR | Zbl

[10] Yablonskaya N. V., “O spetsialnykh gruppakh pochti geodezicheskikh preobrazovanii prostranstv affinnoi svyaznosti”, Izv. vuzov. Matem., 1986, no. 1, 78–80

[11] Petrov A. Z., Modelirovanie fizicheskikh polei, Gravitatsiya i teoriya otnositelnosti, 4–5, Izd-vo Kazansk. un-ta, Kazan, 1968, 7–21