On use of general Lyapunov function in investigation of stability problem for Takagi--Sugeno systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 77-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a stability of the zero solution for a nonlinear system of ODE by use of Takagi–Sugeno (TS) representation. It is known that the most constructive sufficient conditions on stability and stabilization for TS systems have been established using a general quadratic Lyapunov function (GQFL). These conditions may be expressed in the form of linear matrix inequalities (LMI). However, such results are often too conservative. On the base of modified Lyapunov method we propose some weakened asymptotic stability conditions that reduce requirements for CQLF. The results are applicable to a wider class of systems. We give illustrative examples.
Keywords: Takagi–Sugeno system, stability, general quadratic Lyapunov function.
@article{IVM_2017_5_a8,
     author = {N. O. Sedova and Zh. E. Egrashkina},
     title = {On use of general {Lyapunov} function in investigation of stability problem for {Takagi--Sugeno} systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {77--85},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_5_a8/}
}
TY  - JOUR
AU  - N. O. Sedova
AU  - Zh. E. Egrashkina
TI  - On use of general Lyapunov function in investigation of stability problem for Takagi--Sugeno systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 77
EP  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_5_a8/
LA  - ru
ID  - IVM_2017_5_a8
ER  - 
%0 Journal Article
%A N. O. Sedova
%A Zh. E. Egrashkina
%T On use of general Lyapunov function in investigation of stability problem for Takagi--Sugeno systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 77-85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_5_a8/
%G ru
%F IVM_2017_5_a8
N. O. Sedova; Zh. E. Egrashkina. On use of general Lyapunov function in investigation of stability problem for Takagi--Sugeno systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 77-85. http://geodesic.mathdoc.fr/item/IVM_2017_5_a8/

[1] Egrashkina Zh. E., Sedova N. O., “Ustoichivost i stabilizatsiya nelineinykh sistem obyknovennykh differentsialnykh uravnenii v terminakh lineinykh matrichnykh neravenstv”, Nelineinyi mir, 13:1 (2015), 3–15

[2] Al-Hadithi B. M., Jimenez A., Matia F., “A new approach to fuzzy estimation of Takagi–Sugeno model and its applications to optimal control for nonlinear systems”, Appl. Soft Comput., 12:1 (2012), 280–290 | DOI

[3] Tanaka K., Wang H. O., Fuzzy control systems design and analysis: a linear matrix unequality approach, Wiley, N. Y., 2001

[4] Feng G., “A survey on analysis and design of model-based fuzzy control systems”, IEEE Trans. Fuzzy Systems, 14:5 (2006), 676–697 | DOI

[5] Muhammad M., Buyamin S., Ahmad M. N., Nawawi S. W., Ahmad A., “A new approach to stabilization of continuous time T-S fuzzy control systems via fuzzy Lyapunov function”, Int. J. Mech. Mechatronics Eng. IJMME-IJENS, 13:6 (2013)

[6] Nesterov Yu. E., Metody vypukloi optimizatsii, Izd-vo MTsNMO, M., 2010

[7] Nesterov Y. E., Nemirovski A., Interior-point polynomial algorithms in convex programming, SIAM, Philadelphia, 1994 | MR | Zbl

[8] Barbashin E. A., Krasovskii N. N., “Ob ustoichivosti dvizheniya v tselom”, DAN SSSR, 86:3 (1952), 453–546

[9] Bulgakov N. G., Kalitin B. S., “Obobschenie teorem vtorogo metoda Lyapunova. 1: Teoriya”, Izv. AN BSSR. Ser. fiz.-matem., 3 (1978), 32–36

[10] Bulgakov N. G., Znakopostoyannye funktsii v teorii ustoichivosti, Izd-vo “Universitetskoe”, Minsk, 1984 | MR

[11] Iggidr A., Kalitine B., Outbib R., “Semidefinite Lyapunov functions: stability and stabilization”, Math. Control Signals Systems, 9:2 (1996), 95–106 | DOI | MR | Zbl

[12] Vasilev S. N., Malikov A. I., “O nekotorykh rezultatakh po ustoichivosti pereklyuchaemykh i gibridnykh sistem”, K 20-letiyu IMM KazNTs RAN, Aktualn. probl. mekhan. sploshnoi sredy, 1, Foliant, Kazan, 2011, 23–81

[13] Pakshin P. V., Pozdyaev V. V., “Usloviya razreshimosti sistemy lineinykh matrichnykh neravenstv vtorogo poryadka”, Izv. RAN. Teor. i sistemy upravleniya, 5 (2006), 5–14 | Zbl

[14] Pozdyaev V. V., “Ob analiticheskom reshenii sistem matrichnykh neravenstv, dvoistvennykh k sistemam neravenstv Lyapunova”, Upravlenie bolshimi sistemami, 28 (2010), 58–74