A new approach to solving homogeneous Riemann boundary-value problem on a ray with infinite index
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 71-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Riemann boundary-value problem with infinite index where the edge condition of a problem is given on positive real axis of a complex plane. To solve this problem we use an approach based on the removal of the infinite discontinuity of the argument of coefficient of boundary condition. The approach is analogous to that e one which, in the case of finite index of the problem in papers by F. D. Gakhov, helps to remove a discontinuity of coefficient of boundary condition with specially selected functions, different from the ones in this paper.
Keywords: Riemann boundary-value problem, analytical function, infinite index.
@article{IVM_2017_5_a7,
     author = {R. B. Salimov and A. Z. Suleimanov},
     title = {A new approach to solving homogeneous {Riemann} boundary-value problem on a ray with infinite index},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--76},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_5_a7/}
}
TY  - JOUR
AU  - R. B. Salimov
AU  - A. Z. Suleimanov
TI  - A new approach to solving homogeneous Riemann boundary-value problem on a ray with infinite index
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 71
EP  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_5_a7/
LA  - ru
ID  - IVM_2017_5_a7
ER  - 
%0 Journal Article
%A R. B. Salimov
%A A. Z. Suleimanov
%T A new approach to solving homogeneous Riemann boundary-value problem on a ray with infinite index
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 71-76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_5_a7/
%G ru
%F IVM_2017_5_a7
R. B. Salimov; A. Z. Suleimanov. A new approach to solving homogeneous Riemann boundary-value problem on a ray with infinite index. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 71-76. http://geodesic.mathdoc.fr/item/IVM_2017_5_a7/

[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968

[2] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[3] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986

[4] Tolochko M. E., “O razreshimosti odnorodnoi kraevoi zadachi Rimana s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR, ser. fiz.-matem. nauk, 1972, no. 5, 34–41

[5] Sandrygailo I. E., “O kraevoi zadachi Rimana s beskonechnym indeksom dlya poluploskosti”, Dokl. AN BSSR, 19:10 (1975), 872–875 | Zbl

[6] Monakhov V. N., Semenko E. V., “Kraevye zadachi s beskonechnym indeksom v prostranstvakh Khardi”, DAN SSSR, 291:3 (1986), 544–547

[7] Alekhno A. G., “Dostatochnye usloviya razreshimosti odnorodnoi kraevoi zadachi Rimana s beskonechnym indeksom”, Tr. matem. tsentra im. N. I. Lobachevskogo, 14, Kazan, 2002, 71–77

[8] Garifyanov F. N., “Ob odnom osobom sluchae zadachi Rimana”, Tr. semin. po kraevym zadacham, 22, Kazan, 1984, 66–68

[9] Kats B. A., “Ob odnoi zadache Rimana s ostsilliruyuschim koeffitsientom”, Tr. semin. po kraevym zadacham, 14, Kazan, 1977, 110–120

[10] Salimov R. B., Shabalin P. L., “Metod regulyarizuyuschego mnozhitelya dlya resheniya odnorodnoi zadachi Gilberta s beskonechnym indeksom”, Izv. vuzov. Matem., 2001, no. 4, 76–79

[11] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 2, Nauka, M., 1968