Complex spherical semi-designs
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 54-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a complex analog of Sidelnikov's integral inequality. In discrete case an inequality turns into equality on the complex spherical semi-designs and only on them.
Keywords: Sidelnikov's inequality, complex spherical semi-designs.
@article{IVM_2017_5_a5,
     author = {N. O. Kotelina and A. B. Pevnyi},
     title = {Complex spherical semi-designs},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {54--60},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_5_a5/}
}
TY  - JOUR
AU  - N. O. Kotelina
AU  - A. B. Pevnyi
TI  - Complex spherical semi-designs
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 54
EP  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_5_a5/
LA  - ru
ID  - IVM_2017_5_a5
ER  - 
%0 Journal Article
%A N. O. Kotelina
%A A. B. Pevnyi
%T Complex spherical semi-designs
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 54-60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_5_a5/
%G ru
%F IVM_2017_5_a5
N. O. Kotelina; A. B. Pevnyi. Complex spherical semi-designs. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 54-60. http://geodesic.mathdoc.fr/item/IVM_2017_5_a5/

[1] Sidelnikov V. M., “Novye otsenki dlya plotneishei upakovki v $n$-mernom evklidovom prostranstve”, Matem. sb., 95:1 (1974), 148–158 | Zbl

[2] Kotelina N. O., Pevnyi A. B., “Neravenstvo Sidelnikova”, Algebra i analiz, 26:2 (2014), 45–52 | Zbl

[3] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb{C}^n$, Mir, M., 1984

[4] Venkov B., “Réseaux et designs sphériques”, Réseaux Euclidiens, Designs Sphériques et Formes Modulaires, Monogr. Enseign. Math., 37, Genève, 2001, 10–86 | MR | Zbl

[5] Roy A., Suda S., Complex spherical designs and codes, arXiv: 1104.4692v1 | MR

[6] Kotelina N. O., Pevnyi A. B., “Neravenstvo Venkova s vesami i vzveshennye sfericheskie poludizainy”, Probl. matem. analiza, 55, 2011, 29–36

[7] Andreev N. N., “Minimalnyi dizain $11$-go poryadka na trekhmernoi sfere”, Matem. zametki, 67:4 (2000), 489–497 | DOI | Zbl