Multiplicative convolutions of functions from Lorentz spaces and convergence of series from Fourier--Vilenkin coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 32-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ and $g$ be functions from different Lorentz spaces $L^{p,q}[0,1)$, $h$ be their multiplicative convolution and $\widehat{h}(k)$ be Fourier coefficients of $h$ with respect to a multiplicative system with bounded generating sequence. We estimate the remainder of the series of $|\widehat{h}(k)|^a$ with multiplicators of type $k^b$ in terms of best approximations of $f$ and $g$ in corresponding Lorentz spaces. We establish the sharpness of this result and its corollaries for Lebesgue spaces.
Keywords: Lorentz space, multiplicative system, best approximation.
Mots-clés : Fourier coefficients, multiplicative convolution
@article{IVM_2017_5_a3,
     author = {S. S. Volosivets and M. A. Kuznetsova},
     title = {Multiplicative convolutions of functions from {Lorentz} spaces and convergence of series from {Fourier--Vilenkin} coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--44},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_5_a3/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - M. A. Kuznetsova
TI  - Multiplicative convolutions of functions from Lorentz spaces and convergence of series from Fourier--Vilenkin coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 32
EP  - 44
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_5_a3/
LA  - ru
ID  - IVM_2017_5_a3
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A M. A. Kuznetsova
%T Multiplicative convolutions of functions from Lorentz spaces and convergence of series from Fourier--Vilenkin coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 32-44
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_5_a3/
%G ru
%F IVM_2017_5_a3
S. S. Volosivets; M. A. Kuznetsova. Multiplicative convolutions of functions from Lorentz spaces and convergence of series from Fourier--Vilenkin coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 32-44. http://geodesic.mathdoc.fr/item/IVM_2017_5_a3/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987

[2] Hunt R. A., “On $L(p,q)$ spaces”, L'Enseign. Math., 12:3 (1966), 249–275 | MR

[3] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974

[4] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR

[5] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[6] Onneweer C. W., “On absolutely convergent Fourier series”, Arkiv Math., 12:1–2 (1974), 51–58 | DOI | MR | Zbl

[7] Onneweer C. W., “Absolute convergence of Fourier series on certain groups. II”, Duke Math. J., 41:3 (1974), 679–688 | DOI | MR | Zbl

[8] Volosivets S. S., “O skhodimosti ryadov iz koeffitsientov Fure multiplikativnykh svertok”, Izv. vuzov. Matem., 2008, no. 11, 27–39 | MR | Zbl

[9] Izumi M., Izumi S.-I., “Absolute convergence of Fourier series of convolution functions”, J. Approxim. Theory, 1:1 (1968), 103–109 | DOI | MR | Zbl

[10] Ilyasov N. A., “To the M. Riesz theorem on absolute convergence of the trigonometric Fourier series”, Transactions of NAS of Azerbaijan, Ser. phys.-tech. and math. sci., 24:1 (2004), 113–120 | MR | Zbl

[11] Ilyasov N. A., “To the M. Riesz theorem on absolute convergence of the trigonometric Fourier series (second report)”, Transactions of NAS of Azerbaijan, Ser. phys.-tech. and math. sci., 24:4 (2004), 135–142 | MR

[12] Ilyasov N. A., “Skorostnaya $L_p$-versiya kriteriya M. Rissa absolyutnoi skhodimosti trigonometricheskikh ryadov Fure”, Tr. in-ta matem. i mekhan. UrO RAN, 16, no. 4, 2010, 193–202

[13] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[14] Volosivets S. S., “On Hardy and Bellman transforms of series with respect to multiplicative systems in symmetric spaces”, Anal. Math., 35:2 (2009), 131–148 | DOI | MR | Zbl

[15] Sagher Y., “An application of interpolation theory to Fourier series”, Studia Math., 41:2 (1972), 169–181 | MR | Zbl

[16] Volosivets S. S., “O nekotorykh usloviyakh v teorii ryadov po multiplikativnym sistemam”, Anal. Math., 33:3 (2007), 227–246 | DOI | MR | Zbl

[17] O'Neil R., “Convolution operators and $L(p,q)$ spaces”, Duke Math. J., 30:1 (1963), 129–142 | DOI | MR | Zbl

[18] Young W. S., “Mean convergence of generalized Walsh–Fourier series”, Trans. Amer. Math. Soc., 218 (1976), 311–320 | DOI | MR | Zbl

[19] Stechkin S. B., “Ob absolyutnoi skhodimosti ryadov Fure (trete soobschenie)”, Izv. AN SSSR. Ser. matem., 20:3 (1956), 385–412 | Zbl

[20] Timan M. F., Rubinshtein A. I., “O vlozhenii klassov funktsii, opredelennykh na nul-mernykh gruppakh”, Izv. vuzov. Matem., 1980, no. 6, 66–76

[21] Agafonova N. Yu., “O nailuchshikh priblizheniyakh funktsii po multiplikativnym sistemam i svoistvakh ikh koeffitsientov Fure”, Anal. Math., 33:3 (2007), 247–262 | DOI | MR | Zbl

[22] Konyushkov A. A., “Nailuchshee priblizhenie trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44:1 (1958), 53–84 | MR

[23] Khardi G., Littlvud Dzh. E., Polia G., Neravenstva, In. lit., M., 1948

[24] Yap L. Y. H., “Convolution functions on compact Abelian groups”, Anal. Math., 3:4 (1977), 317–320 | DOI | MR | Zbl