Nonlocal problem with integral conditions for a system of hyperbolic equations in characteristic rectangle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 11-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlocal problem with integral conditions for a system of hyperbolic equations in rectangular domain. We investigate the questions of existence of unique classical solution to the problem under consideration and approaches of its construction. Sufficient conditions of unique solvability to the investigated problem are established in the terms of initial data. The nonlocal problem with integral conditions is reduced to an equivalent problem consisting of the Goursat problem for the system of hyperbolic equations with functional parameters and functional relations. We propose algorithms for finding a solution to the equivalent problem with functional parameters on the characteristics and prove their convergence. We also obtain the conditions of a unique solvability to the boundary-value problem with integral condition for the system of an ordinary differential equations. As an example, we consider the nonlocal boundary-value problem with integral conditions for two-dimensional system of hyperbolic equations.
Keywords: system of hyperbolic equations, nonlocal problem, integral condition, solvability, algorithm.
@article{IVM_2017_5_a1,
     author = {A. T. Assanova},
     title = {Nonlocal problem with integral conditions for a system of hyperbolic equations in characteristic rectangle},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--25},
     publisher = {mathdoc},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_5_a1/}
}
TY  - JOUR
AU  - A. T. Assanova
TI  - Nonlocal problem with integral conditions for a system of hyperbolic equations in characteristic rectangle
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 11
EP  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_5_a1/
LA  - ru
ID  - IVM_2017_5_a1
ER  - 
%0 Journal Article
%A A. T. Assanova
%T Nonlocal problem with integral conditions for a system of hyperbolic equations in characteristic rectangle
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 11-25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_5_a1/
%G ru
%F IVM_2017_5_a1
A. T. Assanova. Nonlocal problem with integral conditions for a system of hyperbolic equations in characteristic rectangle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2017), pp. 11-25. http://geodesic.mathdoc.fr/item/IVM_2017_5_a1/

[1] Nakhushev A. M., “Kraevye zadachi dlya nagruzhennykh integro-differentsialnykh uravnenii giperbolicheskogo tipa i nekotorye ikh prilozheniya k prognozu pochvennoi vlagi”, Differents. uravneniya, 15:1 (1979), 96–105 | Zbl

[2] Nakhushev A. M., “Ob odnom priblizhennom metode resheniya kraevykh zadach dlya differentsialnykh uravnenii i ego prilozheniya k dinamike pochvennoi vlagi i gruntovykh vod”, Differents. uravneniya, 18:1 (1982), 72–81 | Zbl

[3] Ptashnik B. I., Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Nauk. dumka, Kiev, 1984

[4] Nakhusheva Z. A., “Ob odnoi nelokalnoi zadache dlya uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 22:1 (1986), 171–174

[5] Zhestkov S. V., “O zadache Gursa s integralnymi kraevymi usloviyami”, Ukr. matem. zhurn., 42:1 (1990), 132–135 | Zbl

[6] Kiguradze T., “Some boundary value problems for systems of linear partial differential equations of hyperbolic type”, Mem. Diff. Equat. and Math. Phys., 1 (1994), 1–144 | MR | Zbl

[7] Golubeva N. D., Pulkina L. S., “Ob odnoi nelokalnoi zadache s integralnymi usloviyami”, Matem. zametki, 59:3 (1996), 171–174 | DOI

[8] Bouziani A., “Solution forte d'un probleme mixte avec conditions non locales pour une classe d'equations hyperboliques”, Bull. Cl. Sci. Acad. Roy. Belg., 8 (1997), 53–70 | MR | Zbl

[9] Pulkina L. S., “O razreshimosti v $L_2$ nelokalnoi zadachi s integralnymi usloviyami dlya giperbolicheskogo uravneniya”, Differents. uravneniya, 36:2 (2000), 279–280 | Zbl

[10] Pulkina L. S., “Nelokalnaya zadacha dlya nagruzhennogo giperbolicheskogo uravneniya”, Tr. Matem. in-ta RAN im. V. A. Steklova, 236, 2002, 298–303 | Zbl

[11] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006

[12] Asanova A. T., “O nelokalnoi zadache s integralnym smescheniem dlya sistem giperbolicheskikh uravnenii so smeshannoi proizvodnoi”, Matem. zhurn., 8:1 (2008), 9–16

[13] Tkach B. P., Urmancheva L. B., “Chislenno-analiticheskii metod otyskaniya reshenii sistem s raspredelennymi parametrami s integralnym usloviem”, Nelinein. koleb., 12:1 (2009), 110–119 | MR | Zbl

[14] Pulkina L. S., Kechina O. M., “Nelokalnaya zadacha s integralnymi usloviyami dlya giperbolicheskogo uravneniya v kharakteristicheskom pryamougolnike”, Vestn. SamGU. Estestvonauchn. ser., 68:2 (2009), 80–88 | Zbl

[15] Sabitova Yu. K., “Nelokalnye nachalno-granichnye zadachi dlya vyrozhdayuschegosya giperbolicheskogo uravneniya”, Izv. vuzov. Matem., 2009, no. 12, 49–58

[16] Kechina O. M., “Nelokalnaya zadacha dlya giperbolicheskogo uravneniya s usloviyami, zadannymi vnutri kharakteristicheskogo pryamougolnika”, Vestn. SamGU. Estestvonauchn. ser., 72:6 (2009), 50–56

[17] Utkina E. A., “O edinstvennosti resheniya poluintegralnoi zadachi dlya odnogo uravneniya chetvertogo poryadka”, Vestn. SamGU. Estestvonauchn. ser., 78:4 (2010), 98–102

[18] Sabitov K. B., “Kraevaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa s nelokalnym integralnym usloviem”, Differents. uravneniya, 46:10 (2010), 1468–1478 | Zbl

[19] Moiseev E. I., Korzyuk V. I., Kozlovskaya I. S., “Klassicheskoe reshenie zadachi s integralnym usloviem dlya odnomernogo volnovogo uravneniya”, Differents. uravneniya, 50:10 (2014), 1373–1385 | DOI | MR | Zbl

[20] Sabitova Yu. K., “Kraevaya zadacha s nelokalnym integralnym usloviem dlya uravnenii smeshannogo tipa s vyrozhdeniem na perekhodnoi linii”, Matem. zametki, 98:3 (2015), 393–406 | DOI | Zbl

[21] Samoilenko A. M., Tkach B. P., Chislenno-analiticheskie metody v teorii periodicheskikh reshenii uravnenii s chastnymi proizvodnymi, Nauk. dumka, Kiev, 1992

[22] Kiguradze T. I., Kusano T., “O korrektnosti nachalno-kraevykh zadach dlya lineinykh giperbolicheskikh uravnenii vysshikh poryadkov s dvumya nezavisimymi peremennymi”, Differents. uravneniya, 39:4 (2003), 516–526 | MR | Zbl

[23] Asanova A. T., Dzhumabaev D. S., “Well-posedness of nonlocal boundary value problems with integral condition for the system of hyperbolic equations”, J. Math. Anal. Appl., 402:1 (2013), 167–178 | DOI | MR | Zbl

[24] Asanova A. T., Dzhumabaev D. S., “Odnoznachnaya razreshimost kraevoi zadachi s dannymi na kharakteristikakh dlya sistem giperbolicheskikh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 42:11 (2002), 1673–1685 | MR | Zbl

[25] Asanova A. T., Dzhumabaev D. S., “Odnoznachnaya razreshimost nelokalnoi kraevoi zadachi dlya sistem giperbolicheskikh uravnenii”, Differents. uravneniya, 39:10 (2003), 1343–1354 | MR | Zbl

[26] Dzhumabaev D. S., “Priznaki odnoznachnoi razreshimosti lineinoi kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Zhurn. vychisl. matem. i matem. fiz., 29:1 (1989), 50–66 | MR | Zbl

[27] Assanova A. T., “On the unique solvability of a nonlocal problem with integral conditions for the hyperbolic equations”, Abstract book of 8th Internat. workshop “Anal. Methods of Anal. and Diff. Equat.” dedicated to the memory of professor A. A. Kilbas (1948–2010), AMADE-2015 (Minsk, September 14–19, 2015), Belarusian State University, Minsk, 16–17