About a regularized method for solving a constrained pseudoinverse problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 76-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a constrained pseudoinverse problem with operators satisfying complementarity condition we suggest a one-parametric continuous method of regularization of second order. This method is based on stabilization of solutions to Cauchy problems for linear differential equation of second order in Hilbert space constructed on the base of the method of a heavy globule. We establish conditions on the parametric function of regularization and levels of disturbances ensuring the stability of the method in the class of all constrained disturbances.
Keywords: constrained pseudoinverse problem, continuous method of regularization of second order, complementarity condition of operators.
@article{IVM_2017_4_a8,
     author = {R. A. Shafiev and E. A. Bondar' and I. Yu. Yastrebova},
     title = {About a regularized method for solving a constrained pseudoinverse problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--83},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a8/}
}
TY  - JOUR
AU  - R. A. Shafiev
AU  - E. A. Bondar'
AU  - I. Yu. Yastrebova
TI  - About a regularized method for solving a constrained pseudoinverse problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 76
EP  - 83
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_4_a8/
LA  - ru
ID  - IVM_2017_4_a8
ER  - 
%0 Journal Article
%A R. A. Shafiev
%A E. A. Bondar'
%A I. Yu. Yastrebova
%T About a regularized method for solving a constrained pseudoinverse problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 76-83
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_4_a8/
%G ru
%F IVM_2017_4_a8
R. A. Shafiev; E. A. Bondar'; I. Yu. Yastrebova. About a regularized method for solving a constrained pseudoinverse problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 76-83. http://geodesic.mathdoc.fr/item/IVM_2017_4_a8/

[1] Ninamide N., Nakamura K., “A restricted pseudoinverse and its application to cotrained minima”, SIAM J. Appl. Math., 19 (1970), 167–177 | DOI | MR

[2] Morozov V. A., Kirsanova N. N., “Ob odnom obobschenii metoda regulyarizatsii”, Vychislitelnye metody i programmirovanie, 14, MGU, M., 1970, 40–45

[3] Groetsch C. W., “Regularization with linear equality constraints”, Lect. Notes Math., 1225, 1986, 168–181 | DOI | MR | Zbl

[4] Vasin V. V., Ageev A. L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993

[5] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986

[6] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987

[7] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987

[8] Bondar E. A., Shafiev R. A., “Reshenie zadachi svyazannogo psevdoobrascheniya nepreryvnym metodom regulyarizatsii vtorogo poryadka”, Vestn. NNGU. Matem. modelirovanie i optimalnoe upravlenie, 2011, no. 11, 176–182

[9] Shafiev R. A., Psevdoobraschenie operatorov i nekotorye prilozheniya, Elm, Baku, 1989

[10] Arkharov E. V., Shafiev R. A., “Metody regulyarizatsii zadachi svyazannogo psevdoobrascheniya s priblizhennymi dannymi”, Zhurn. vychisl. matem. i matem. fiz., 43:3 (2003), 347–353 | MR | Zbl

[11] Bondar E. A., Yastrebova I. Yu., “Metod ustanovleniya dlya zadachi svyazannogo psevdoobrascheniya”, Vestn. NNGU. Matem. modelirovanie i optimalnoe upravlenie, 2003, no. 1(26), 55–63

[12] Bondar E. A., Shafiev R. A., “Nepreryvnyi metod resheniya zadachi svyazannogo psevdoobrascheniya”, Vestn. NNGU. Matematika, 2006, no. 1(4), 4–14

[13] Shafiev R. A., Bondar E. A., Yastrebova I. Yu., “O nepreryvnom metode regulyarizatsii zadachi svyazannogo psevdoobrascheniya s dopolnitelnymi ogranicheniyami na vkhodnye operatory”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 158, no. 1, 2016, 106–116

[14] Antipin A. S., “Nepreryvnye i iterativnye protsessy s operatorami proektirovaniya i tipa proektirovaniya”, Vychisl. vopr. analiza bolshikh sistem, Voprosy kibernetiki, Nauchnyi sovet po kompleksnoi probleme “Kibernetika” AN SSSR, M., 1989, 5–43.

[15] Vasilev F. P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981

[16] Ryazantseva I. P., “Nepreryvnyi metod resheniya zadach uslovnoi minimizatsii”, Zhurn. vychisl. matem. i matem. fiz., 39:5 (1999), 734–742 | MR | Zbl

[17] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2007