Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_4_a7, author = {S. N. Timergaliev}, title = {A method of integral equations in nonlinear boundary-value problems for flat shells of the {Timoshenko} type with free edges}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {59--75}, publisher = {mathdoc}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a7/} }
TY - JOUR AU - S. N. Timergaliev TI - A method of integral equations in nonlinear boundary-value problems for flat shells of the Timoshenko type with free edges JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 59 EP - 75 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_4_a7/ LA - ru ID - IVM_2017_4_a7 ER -
%0 Journal Article %A S. N. Timergaliev %T A method of integral equations in nonlinear boundary-value problems for flat shells of the Timoshenko type with free edges %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 59-75 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_4_a7/ %G ru %F IVM_2017_4_a7
S. N. Timergaliev. A method of integral equations in nonlinear boundary-value problems for flat shells of the Timoshenko type with free edges. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 59-75. http://geodesic.mathdoc.fr/item/IVM_2017_4_a7/
[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989
[2] Morozov N. F., Izbrannye dvumernye zadachi teorii uprugosti, LGU, L., 1978
[3] Karchevskii M. M., “Nelineinye zadachi teorii plastin i obolochek i ikh setochnye approksimatsii”, Izv. vuzov. Matem., 1985, no. 10, 17–30
[4] Karchevskii M. M., Paimushin V. N., “O variatsionnykh zadachakh teorii trekhsloinykh pologikh obolochek”, Differents. uravneniya, 30:7 (1994), 1217–1221 | Zbl
[5] Timergaliev S. N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 2011
[6] Badriev I. B., Banderov V. V., Garipova G. Z., Makarov M. V., Shagidullin R. R., “On the solvability of geometrically nonlinear problem of sandwich plate theory”, Appl. Math. Sci., 9:82 (2015), 4095–4102 | DOI
[7] Badriev I. B., Makarov M. V., Paimushin V. N., “Solvability of a physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core”, Russian Math. (Iz. VUZ), 59:10 (2015), 57–60 | DOI | MR | Zbl
[8] Timergaliev S. N., “O razreshimosti geometricheski nelineinykh kraevykh zadach dlya anizotropnykh obolochek tipa Timoshenko s zhestko zadelannymi krayami”, Izv. vuzov. Matem., 2011, no. 8, 56–68 | MR | Zbl
[9] Timergaliev S. N., “Dokazatelstvo suschestvovaniya resheniya sistemy differentsialnykh uravnenii s chastnymi proizvodnymi nelineinoi teorii pologikh obolochek tipa Timoshenko”, Differents. uravneniya, 48:3 (2012), 450–454 | MR | Zbl
[10] Timergaliev S. N., “O suschestvovanii reshenii geometricheski nelineinykh zadach dlya pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Izv. vuzov. Matem., 2014, no. 3, 40–56 | MR | Zbl
[11] Timergaliev S. N., “K voprosu o suschestvovanii reshenii nelineinoi kraevoi zadachi dlya sistemy differentsialnykh uravnenii s chastnymi proizvodnymi teorii pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Differents. uravneniya, 51:3 (2015), 373–386 | DOI | MR | Zbl
[12] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975
[13] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR
[14] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Fizmatgiz, M., 1962
[15] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, Gostekhizdat, M., 1948
[16] Gakhov F. D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963
[17] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976
[18] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956
[19] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980