A method of integral equations in nonlinear boundary-value problems for flat shells of the Timoshenko type with free edges
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 59-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence theorem for solutions of geometrically nonlinear boundary-value problems for elastic shallow isotropic homogeneous shells with free edges under shear model of S. P. Timoshenko. Research method consists in the reduction of the original system of equilibrium equations to a single nonlinear equation for the components of transverse shear deformations. The basis of this method are integral representations for the generalized displacements, containing an arbitrary holomorphic functions, which are determined by the boundary conditions involving the theory of one-dimensional singular integral equations.
Mots-clés : Timoshenko type shell
Keywords: equilibrium equations system, boundary problem, generalized shifts, generalized problem solution, integral images, integral equations, singular integral equations, existence theorem.
@article{IVM_2017_4_a7,
     author = {S. N. Timergaliev},
     title = {A method of integral equations in nonlinear boundary-value problems for flat shells of the {Timoshenko} type with free edges},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--75},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a7/}
}
TY  - JOUR
AU  - S. N. Timergaliev
TI  - A method of integral equations in nonlinear boundary-value problems for flat shells of the Timoshenko type with free edges
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 59
EP  - 75
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_4_a7/
LA  - ru
ID  - IVM_2017_4_a7
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%T A method of integral equations in nonlinear boundary-value problems for flat shells of the Timoshenko type with free edges
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 59-75
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_4_a7/
%G ru
%F IVM_2017_4_a7
S. N. Timergaliev. A method of integral equations in nonlinear boundary-value problems for flat shells of the Timoshenko type with free edges. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 59-75. http://geodesic.mathdoc.fr/item/IVM_2017_4_a7/

[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989

[2] Morozov N. F., Izbrannye dvumernye zadachi teorii uprugosti, LGU, L., 1978

[3] Karchevskii M. M., “Nelineinye zadachi teorii plastin i obolochek i ikh setochnye approksimatsii”, Izv. vuzov. Matem., 1985, no. 10, 17–30

[4] Karchevskii M. M., Paimushin V. N., “O variatsionnykh zadachakh teorii trekhsloinykh pologikh obolochek”, Differents. uravneniya, 30:7 (1994), 1217–1221 | Zbl

[5] Timergaliev S. N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 2011

[6] Badriev I. B., Banderov V. V., Garipova G. Z., Makarov M. V., Shagidullin R. R., “On the solvability of geometrically nonlinear problem of sandwich plate theory”, Appl. Math. Sci., 9:82 (2015), 4095–4102 | DOI

[7] Badriev I. B., Makarov M. V., Paimushin V. N., “Solvability of a physically and geometrically nonlinear problem of the theory of sandwich plates with transversal-soft core”, Russian Math. (Iz. VUZ), 59:10 (2015), 57–60 | DOI | MR | Zbl

[8] Timergaliev S. N., “O razreshimosti geometricheski nelineinykh kraevykh zadach dlya anizotropnykh obolochek tipa Timoshenko s zhestko zadelannymi krayami”, Izv. vuzov. Matem., 2011, no. 8, 56–68 | MR | Zbl

[9] Timergaliev S. N., “Dokazatelstvo suschestvovaniya resheniya sistemy differentsialnykh uravnenii s chastnymi proizvodnymi nelineinoi teorii pologikh obolochek tipa Timoshenko”, Differents. uravneniya, 48:3 (2012), 450–454 | MR | Zbl

[10] Timergaliev S. N., “O suschestvovanii reshenii geometricheski nelineinykh zadach dlya pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Izv. vuzov. Matem., 2014, no. 3, 40–56 | MR | Zbl

[11] Timergaliev S. N., “K voprosu o suschestvovanii reshenii nelineinoi kraevoi zadachi dlya sistemy differentsialnykh uravnenii s chastnymi proizvodnymi teorii pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Differents. uravneniya, 51:3 (2015), 373–386 | DOI | MR | Zbl

[12] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975

[13] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR

[14] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Fizmatgiz, M., 1962

[15] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, Gostekhizdat, M., 1948

[16] Gakhov F. D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963

[17] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976

[18] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956

[19] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980