On local stability of a population dynamics model with three development stages
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 35-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an age-dependent model of population dynamics, and obtain a sharp effective coefficient criterion of asymptotic stability for the nontrivial equilibrium point.
Keywords: population dynamics, delay differential equations, stability
Mots-clés : age structure of population, efficient conditions.
@article{IVM_2017_4_a4,
     author = {V. V. Malygina and M. V. Mulyukov},
     title = {On local stability of a population dynamics model with three development stages},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--42},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a4/}
}
TY  - JOUR
AU  - V. V. Malygina
AU  - M. V. Mulyukov
TI  - On local stability of a population dynamics model with three development stages
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 35
EP  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_4_a4/
LA  - ru
ID  - IVM_2017_4_a4
ER  - 
%0 Journal Article
%A V. V. Malygina
%A M. V. Mulyukov
%T On local stability of a population dynamics model with three development stages
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 35-42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_4_a4/
%G ru
%F IVM_2017_4_a4
V. V. Malygina; M. V. Mulyukov. On local stability of a population dynamics model with three development stages. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 35-42. http://geodesic.mathdoc.fr/item/IVM_2017_4_a4/

[1] Pertsev N. V., Tarasov I. A., “Analiz reshenii integrodifferentsialnogo uravneniya, voznikayuschego v dinamike populyatsii”, Vestn. Omsk. un-ta, 2 (2003), 13–15

[2] Cooke K., Yorke A., “Some equations modelling growth processes and gonorhea epidemics”, Math. Biosci., 16 (1973), 75–101 | DOI | MR | Zbl

[3] Poluektov R. A., Pykh Yu. A., Shvytov I. A., Dinamicheskie modeli ekologicheskikh sistem, Gidrometeoizdat, L., 1980

[4] Malygina V. V., Mulyukov M. V., Pertsev N. V., “O lokalnoi ustoichivosti odnoi modeli dinamiki populyatsii s posledeistviem”, Sib. elektronnye matem. izv., 11 (2014), 951–957 | Zbl

[5] Malygina V. V., Sabatulina T. L., “Ob ustoichivosti lineinogo differentsialnogo uravneniya s ogranichennym posledeistviem”, Izv. vuzov. Matem., 2014, no. 4, 25–41

[6] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967

[7] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971

[8] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991