Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 23-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate an optimal control problem governed by linear elliptic equation, with pointwise control constraints and pointwise and integral state constraints. We construct finite difference approximation of the problem and prove the existence of its solution and convergence to the exact solution. We also construct and investigate constrained saddle point problem and iterative solution method for this problem and analyze the results of the numerical experiments.
Keywords: elliptic optimal control, state constraint, finite difference approximation, constrained saddle point problem, iterative methods.
@article{IVM_2017_4_a3,
     author = {A. V. Lapin and D. G. Zalyalov},
     title = {Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--34},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a3/}
}
TY  - JOUR
AU  - A. V. Lapin
AU  - D. G. Zalyalov
TI  - Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 23
EP  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_4_a3/
LA  - ru
ID  - IVM_2017_4_a3
ER  - 
%0 Journal Article
%A A. V. Lapin
%A D. G. Zalyalov
%T Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 23-34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_4_a3/
%G ru
%F IVM_2017_4_a3
A. V. Lapin; D. G. Zalyalov. Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 23-34. http://geodesic.mathdoc.fr/item/IVM_2017_4_a3/

[1] Bergounioux M., Haddou V., Hintermuller M., Kunisch K., “A comparison of a Moreau–Yosida-based active set strategy and interior point methods for constrained optimal control problems”, SIAM J. Optim., 11 (2000), 495–521 | DOI | MR | Zbl

[2] Troltzsch F., Yousept I., “A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints”, Comput. Optim. Appl., 42 (2009), 43–66 | DOI | MR | Zbl

[3] Hintermuller M., Hinze M., “Moreau–Yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment”, SIAM J. Numer. Anal., 47 (2009), 1666–1683 | DOI | MR | Zbl

[4] Hinze M., Schiela A., “Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment”, Comput. Optim. Appl., 48 (2011), 581–600 | DOI | MR | Zbl

[5] Lapin A., “Preconditioned Uzawa-type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl

[6] Lapin A., Khasanov M., “State-constrained optimal control of an elliptic equation with its right-hand side used as control function”, Lobachevskii J. Math., 32:4 (2011), 453–462 | DOI | MR | Zbl

[7] Zalyalov D. G., Lapin A. V., “Chislennoe reshenie odnoi zadachi optimalnogo upravleniya sistemoi, opisyvaemoi lineinym ellipticheskim uravneniem, pri nalichii nelokalnykh ogranichenii na sostoyanie sistemy”, Uchen. zap. Kazansk. un-ta, 3, 2012, 129–144 | MR | Zbl

[8] Laitinen E., Lapin A., “Iterative solution methods for a class of state constrained optimal control problems”, Appl. Math., 3:12 (2012), 1862–1867 | DOI

[9] Laitinen E., Lapin A., Lapin S., “Iterative solution methods for variational inequalities with nonlinear main operator and constraints to gradient of solution”, Lobachevskii J. Math., 33:4 (2012), 364–371 | DOI | MR

[10] Laitinen E., Lapin A., “Iterative solution methods for the large-scale constrained saddle point problems”, Numer. Methods for Diff. Equat., Optim., and Technological Problems, Comp. Meth. Appl. Sc., 27, 2013, 19–39 | DOI | MR | Zbl

[11] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979

[12] Rannacher R., Scott R., “Some optimal error estimates for piecewise linear finite element approximations”, Math. Comput., 38:158 (1982), 437–445 | DOI | MR | Zbl

[13] Nochetto R., “Pointwise accuracy of a finite element method for nonlinear variational inequalities”, Numer. Math., 54 (1989), 601–618 | DOI | MR | Zbl

[14] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979

[15] Syarle F., Metod konechnykh elementov dlya ellipticheskkh zadach, Mir, M., 1980