Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_4_a3, author = {A. V. Lapin and D. G. Zalyalov}, title = {Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {23--34}, publisher = {mathdoc}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a3/} }
TY - JOUR AU - A. V. Lapin AU - D. G. Zalyalov TI - Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 23 EP - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_4_a3/ LA - ru ID - IVM_2017_4_a3 ER -
%0 Journal Article %A A. V. Lapin %A D. G. Zalyalov %T Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 23-34 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_4_a3/ %G ru %F IVM_2017_4_a3
A. V. Lapin; D. G. Zalyalov. Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 23-34. http://geodesic.mathdoc.fr/item/IVM_2017_4_a3/
[1] Bergounioux M., Haddou V., Hintermuller M., Kunisch K., “A comparison of a Moreau–Yosida-based active set strategy and interior point methods for constrained optimal control problems”, SIAM J. Optim., 11 (2000), 495–521 | DOI | MR | Zbl
[2] Troltzsch F., Yousept I., “A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints”, Comput. Optim. Appl., 42 (2009), 43–66 | DOI | MR | Zbl
[3] Hintermuller M., Hinze M., “Moreau–Yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment”, SIAM J. Numer. Anal., 47 (2009), 1666–1683 | DOI | MR | Zbl
[4] Hinze M., Schiela A., “Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment”, Comput. Optim. Appl., 48 (2011), 581–600 | DOI | MR | Zbl
[5] Lapin A., “Preconditioned Uzawa-type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl
[6] Lapin A., Khasanov M., “State-constrained optimal control of an elliptic equation with its right-hand side used as control function”, Lobachevskii J. Math., 32:4 (2011), 453–462 | DOI | MR | Zbl
[7] Zalyalov D. G., Lapin A. V., “Chislennoe reshenie odnoi zadachi optimalnogo upravleniya sistemoi, opisyvaemoi lineinym ellipticheskim uravneniem, pri nalichii nelokalnykh ogranichenii na sostoyanie sistemy”, Uchen. zap. Kazansk. un-ta, 3, 2012, 129–144 | MR | Zbl
[8] Laitinen E., Lapin A., “Iterative solution methods for a class of state constrained optimal control problems”, Appl. Math., 3:12 (2012), 1862–1867 | DOI
[9] Laitinen E., Lapin A., Lapin S., “Iterative solution methods for variational inequalities with nonlinear main operator and constraints to gradient of solution”, Lobachevskii J. Math., 33:4 (2012), 364–371 | DOI | MR
[10] Laitinen E., Lapin A., “Iterative solution methods for the large-scale constrained saddle point problems”, Numer. Methods for Diff. Equat., Optim., and Technological Problems, Comp. Meth. Appl. Sc., 27, 2013, 19–39 | DOI | MR | Zbl
[11] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979
[12] Rannacher R., Scott R., “Some optimal error estimates for piecewise linear finite element approximations”, Math. Comput., 38:158 (1982), 437–445 | DOI | MR | Zbl
[13] Nochetto R., “Pointwise accuracy of a finite element method for nonlinear variational inequalities”, Numer. Math., 54 (1989), 601–618 | DOI | MR | Zbl
[14] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979
[15] Syarle F., Metod konechnykh elementov dlya ellipticheskkh zadach, Mir, M., 1980