Inner derivations of simple Lie pencils of rank~$1$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 15-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that simple Lie pencils of rank $1$ over algebraically closed field $P$ of characteristic 0, whose operators of left multiplications have the form of sandwich algebra $M_3(U,\mathcal{D}')$, where $U$ is a subspace of all skew-symmetric matrices in $M_3(P)$, $\mathcal{D}'$ is any subspace containing $\langle E\rangle$ in a space of all diagonal matrices $\mathcal{D}$ in $M_3(P)$.
Keywords: Lie pencil, inner derivation, sandwich algebra.
Mots-clés : Cartan subalgebra, torus
@article{IVM_2017_4_a2,
     author = {N. A. Koreshkov},
     title = {Inner derivations of simple {Lie} pencils of rank~$1$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--22},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a2/}
}
TY  - JOUR
AU  - N. A. Koreshkov
TI  - Inner derivations of simple Lie pencils of rank~$1$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 15
EP  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_4_a2/
LA  - ru
ID  - IVM_2017_4_a2
ER  - 
%0 Journal Article
%A N. A. Koreshkov
%T Inner derivations of simple Lie pencils of rank~$1$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 15-22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_4_a2/
%G ru
%F IVM_2017_4_a2
N. A. Koreshkov. Inner derivations of simple Lie pencils of rank~$1$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 15-22. http://geodesic.mathdoc.fr/item/IVM_2017_4_a2/

[1] Kantor I. L., Persits D. B., “O zamknutykh puchkakh lineinykh skobok Puassona”, IX Vsesoyuzn. geometrich. konf., Shtiintsa, Kishinev, 1988, 141

[2] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989

[3] Trofimov V. V., Fomenko A. T., Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, “Faktorial”, “Prosperius”, Udmurt. gos. un-t, Izhevsk, 1995 | MR

[4] Koreshkov N. A., “O nilpotentnosti $n$-kratnykh algebr Li i assotsiativnykh $n$-kratnykh algebr”, Izv. vuzov. Matem., 2010, no. 2, 33–38

[5] Koreshkov N. A., “Teoremy Li i Engelya dlya $n$-kratnykh algebr Li”, Sib. matem. zhurn., 54:3 (2013), 601–609 | Zbl

[6] Filippov V. T., “$n$-lievy algebry”, Sib. matem. zhurn., 26:6 (2007), 126–140

[7] Dotsenko V. V., Khoroshkin A. S., “Formula kharaktera operady pary soglasovannykh skobok i bigamiltonovoi operady”, Funkts. analiz i ego prilozh., 41:1 (2007), 1–22 | DOI

[8] Koreshkov N. A., “Tory v prostykh lievykh puchkakh”, Izv. vuzv. Matem., 2016, no. 6, 48–53 | Zbl

[9] Kaplanskii I., Algebry Li i lokalno konechnye gruppy, Mir, M., 1974

[10] Koreshkov N. A., “Prostye lievy puchki malykh razmernostei”, Sib. matem. zhurn., 55:3 (2014), 428–439 | Zbl