On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 8-14

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with a predator–prey system of differential equations. This ecological system is a model of Lotka–Volterra type whose prey population receives time-variation of the environment. It is not assumed that the time-varying coefficient is weakly integrally positive. We obtain the sifficient conditions of global asymptotic stability of the unique interior equilibrium if the time-variation is bounded.
Keywords: global asymptotic stability, Lotka–Volterra predator–prey model.
@article{IVM_2017_4_a1,
     author = {A. O. Ignat'ev},
     title = {On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {8--14},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a1/}
}
TY  - JOUR
AU  - A. O. Ignat'ev
TI  - On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 8
EP  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_4_a1/
LA  - ru
ID  - IVM_2017_4_a1
ER  - 
%0 Journal Article
%A A. O. Ignat'ev
%T On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 8-14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_4_a1/
%G ru
%F IVM_2017_4_a1
A. O. Ignat'ev. On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 8-14. http://geodesic.mathdoc.fr/item/IVM_2017_4_a1/