Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_4_a1, author = {A. O. Ignat'ev}, title = {On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {8--14}, publisher = {mathdoc}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a1/} }
TY - JOUR AU - A. O. Ignat'ev TI - On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 8 EP - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_4_a1/ LA - ru ID - IVM_2017_4_a1 ER -
A. O. Ignat'ev. On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 8-14. http://geodesic.mathdoc.fr/item/IVM_2017_4_a1/
[1] Ewens W. J., Mathematical population genetics, v. I, Theoretical introduction, Springer, New York, 2004 | MR | Zbl
[2] Hassell M. P., The dynamics of arthropod predator–prey systems, Princeton University Press, Princeton, NJ, 1978 | MR | Zbl
[3] Thieme H. R., Mathematics in population biology, Princeton University Press, Princeton and Oxford, 2003 | MR | Zbl
[4] Sugie J., Saito Y., Fan M., “Global asymptotic stability for predator-prey systems whose prey receives time-variation of the environment”, Proc. Amer. Math. Soc., 139:10 (2011), 3475–3483 | DOI | MR | Zbl
[5] Oaten A., Murdoch W. W., “Functional response and stability in predator–prey systems”, Amer. Naturalist, 109:967 (1975), 289–298 | DOI
[6] Oaten A., Murdoch W. W., “Switching, functional response, and stability in predator–prey systems”, The Amer. Naturalist, 109:967 (1975), 299–318 | DOI
[7] Vijaya L. G. M., Vijaya S., Gunasekaram M., “Stability analysis in dynamics of prey–predator model with holling type. IV: Functional response and intra-specific competition”, Research Inventy: Int. J. Engineering and Sci., 4:1 (2014), 52–61
[8] Saito Y., Sugie J., Lee Y.-H., “Global asymptotic stability for predator-prey models with environmental time-variations”, Appl. Math. Lett., 24:12 (2011), 1973–1980 | DOI | MR | Zbl
[9] Rouche N., Habets P., Laloy M., Stability theory by Liapunov's direct method, Springer, New York, 1977 | MR | Zbl
[10] Persidskii K. P., “Ob ustoichivosti dvizheniya v pervom priblizhenii”, Matem. sb., 40 (1933), 284–293
[11] Lyapunov A. M., Sobranie sochinenii v trekh tomakh, v. 2, Izd-vo AN SSSR, M.–L., 1956
[12] Barbashin N. N., Krasovskii E. A., “Ob ustoichivosti dvizheniya v tselom”, DAN SSSR, 86:6 (1952), 146–152
[13] LaSalle J. P., “Stability theory for ordinary differential equations”, J. Diff. Equat., 4 (1968), 57–65 | DOI | MR | Zbl
[14] Ignatev A. O., “Ob ustoichivosti pochti periodicheskikh sistem otnositelno chasti peremennykh”, Differents. uravneniya, 25:8 (1989), 1446–1448 | MR | Zbl
[15] Ignatyev A. O., “On the stability of equilibrium for almost periodic systems”, Nonlinear Anal. Theory Methods Appl., 29:8 (1997), 957–962 | DOI | MR | Zbl
[16] Savchenko A. Ya., Ignatev A. O., Nekotorye zadachi ustoichivosti neavtonomnykh dinamicheskikh sistem, Nauk. dumka, Kiev, 1989
[17] Ignatev O. A., “Ob ekviasimptoticheskoi ustoichivosti po chasti peremennykh”, PMM, 63:5 (1999), 871–875 | Zbl