On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 8-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with a predator–prey system of differential equations. This ecological system is a model of Lotka–Volterra type whose prey population receives time-variation of the environment. It is not assumed that the time-varying coefficient is weakly integrally positive. We obtain the sifficient conditions of global asymptotic stability of the unique interior equilibrium if the time-variation is bounded.
Keywords: global asymptotic stability, Lotka–Volterra predator–prey model.
@article{IVM_2017_4_a1,
     author = {A. O. Ignat'ev},
     title = {On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {8--14},
     publisher = {mathdoc},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_4_a1/}
}
TY  - JOUR
AU  - A. O. Ignat'ev
TI  - On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 8
EP  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_4_a1/
LA  - ru
ID  - IVM_2017_4_a1
ER  - 
%0 Journal Article
%A A. O. Ignat'ev
%T On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 8-14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_4_a1/
%G ru
%F IVM_2017_4_a1
A. O. Ignat'ev. On global asymptotic stability of the equilibrium of ``predator--prey''~system in varying environment. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2017), pp. 8-14. http://geodesic.mathdoc.fr/item/IVM_2017_4_a1/

[1] Ewens W. J., Mathematical population genetics, v. I, Theoretical introduction, Springer, New York, 2004 | MR | Zbl

[2] Hassell M. P., The dynamics of arthropod predator–prey systems, Princeton University Press, Princeton, NJ, 1978 | MR | Zbl

[3] Thieme H. R., Mathematics in population biology, Princeton University Press, Princeton and Oxford, 2003 | MR | Zbl

[4] Sugie J., Saito Y., Fan M., “Global asymptotic stability for predator-prey systems whose prey receives time-variation of the environment”, Proc. Amer. Math. Soc., 139:10 (2011), 3475–3483 | DOI | MR | Zbl

[5] Oaten A., Murdoch W. W., “Functional response and stability in predator–prey systems”, Amer. Naturalist, 109:967 (1975), 289–298 | DOI

[6] Oaten A., Murdoch W. W., “Switching, functional response, and stability in predator–prey systems”, The Amer. Naturalist, 109:967 (1975), 299–318 | DOI

[7] Vijaya L. G. M., Vijaya S., Gunasekaram M., “Stability analysis in dynamics of prey–predator model with holling type. IV: Functional response and intra-specific competition”, Research Inventy: Int. J. Engineering and Sci., 4:1 (2014), 52–61

[8] Saito Y., Sugie J., Lee Y.-H., “Global asymptotic stability for predator-prey models with environmental time-variations”, Appl. Math. Lett., 24:12 (2011), 1973–1980 | DOI | MR | Zbl

[9] Rouche N., Habets P., Laloy M., Stability theory by Liapunov's direct method, Springer, New York, 1977 | MR | Zbl

[10] Persidskii K. P., “Ob ustoichivosti dvizheniya v pervom priblizhenii”, Matem. sb., 40 (1933), 284–293

[11] Lyapunov A. M., Sobranie sochinenii v trekh tomakh, v. 2, Izd-vo AN SSSR, M.–L., 1956

[12] Barbashin N. N., Krasovskii E. A., “Ob ustoichivosti dvizheniya v tselom”, DAN SSSR, 86:6 (1952), 146–152

[13] LaSalle J. P., “Stability theory for ordinary differential equations”, J. Diff. Equat., 4 (1968), 57–65 | DOI | MR | Zbl

[14] Ignatev A. O., “Ob ustoichivosti pochti periodicheskikh sistem otnositelno chasti peremennykh”, Differents. uravneniya, 25:8 (1989), 1446–1448 | MR | Zbl

[15] Ignatyev A. O., “On the stability of equilibrium for almost periodic systems”, Nonlinear Anal. Theory Methods Appl., 29:8 (1997), 957–962 | DOI | MR | Zbl

[16] Savchenko A. Ya., Ignatev A. O., Nekotorye zadachi ustoichivosti neavtonomnykh dinamicheskikh sistem, Nauk. dumka, Kiev, 1989

[17] Ignatev O. A., “Ob ekviasimptoticheskoi ustoichivosti po chasti peremennykh”, PMM, 63:5 (1999), 871–875 | Zbl