Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 89-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the given finite set of linear functionals we construct functions vanishing on them and give order estimates of their derivatives. We also give their different applications.
Keywords: approximate differentiation, informative power of given functional class, computational (numerical) diameter, recovery of functions by inexact information, limiting error.
@article{IVM_2017_3_a9,
     author = {N. Temirgaliev and A. Zhubanysheva},
     title = {Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--95},
     year = {2017},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a9/}
}
TY  - JOUR
AU  - N. Temirgaliev
AU  - A. Zhubanysheva
TI  - Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 89
EP  - 95
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_3_a9/
LA  - ru
ID  - IVM_2017_3_a9
ER  - 
%0 Journal Article
%A N. Temirgaliev
%A A. Zhubanysheva
%T Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 89-95
%N 3
%U http://geodesic.mathdoc.fr/item/IVM_2017_3_a9/
%G ru
%F IVM_2017_3_a9
N. Temirgaliev; A. Zhubanysheva. Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 89-95. http://geodesic.mathdoc.fr/item/IVM_2017_3_a9/

[1] Amanov T. I., “Granichnye funktsii klassov $H_{p}^{(r_1,\dots,r_n)} $ i $H_{p}^{*(r_1,\dots,r_n)} $”, Izv. AN SSSR. Ser. matem., 19:1 (1955), 17–32 | MR | Zbl

[2] Ulyanov P. L., “Vlozhenie nekotorykh klassov funktsii $H_{p}^{\omega}$”, Izv. AN SSSR. Ser. matem., 32:3 (1968), 649–686 | Zbl

[3] Temlyakov V. N., “Ob odnom prieme polucheniya otsenok snizu pogreshnostei kvadraturnykh formul”, Matem. sb., 181:10 (1990), 1403–1413

[4] Temlyakov V. N., Approximation of periodic functions, Comput. Math. and Anal. Ser., Nova Sci. Publ., 1993 | MR | Zbl

[5] Azhgaliev Sh. U., Temirgaliev N., “Ob informativnoi moschnosti lineinykh funktsionalov”, Matem. zametki, 73:6 (2003), 803–812 | DOI | MR | Zbl

[6] Zhubanysheva A. Zh., Temirgaliev N., “Informativnaya moschnost trigonometricheskikh koeffitsientov Fure i ikh predelnaya pogreshnost pri diskretizatsii operatora differentsirovaniya na mnogomernykh klassakh Soboleva”, Zhurn. vychisl. matem. i matem. fiz., 55:9 (2015), 1474–1485 | DOI | MR | Zbl

[7] Lokutsievskii O. V., Gavrikov M. B., Nachala chislennogo analiza, TOO “Yanus”, M., 1995 | MR

[8] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primenenie tenzornykh proizvedenii funktsionalov v zadachakh chislennogo integrirovaniya”, Izv. RAN, Ser. matem., 73:2 (2009), 183–224 | DOI | MR | Zbl

[9] Novak E., Woźniakowski H., Tractability of multivariate problems, v. 1, EMS Tracts Math., 6, Linear information, European Math. Soc. Publishing House, Zürich, 2008 | MR | Zbl

[10] Novak E., Woźniakowski H., Tractability of multivariate problems, v. 2, EMS Tracts Math., 12, Standard information for functionals, European Math. Soc. Publishing House, Zürich, 2010 | Zbl

[11] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR