Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_3_a8, author = {R. G. Nasibullin and I. K. Shafigullin}, title = {Avkhadiev--Becker type multivalence conditions for harmonic mappings of a disc}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {84--88}, publisher = {mathdoc}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a8/} }
TY - JOUR AU - R. G. Nasibullin AU - I. K. Shafigullin TI - Avkhadiev--Becker type multivalence conditions for harmonic mappings of a disc JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 84 EP - 88 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_3_a8/ LA - ru ID - IVM_2017_3_a8 ER -
R. G. Nasibullin; I. K. Shafigullin. Avkhadiev--Becker type multivalence conditions for harmonic mappings of a disc. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 84-88. http://geodesic.mathdoc.fr/item/IVM_2017_3_a8/
[1] Avkhadiev F. G., Nasibullin R. G., Shafigullin I. K., “Usloviya odnolistnosti tipa Bekkera dlya garmonicheskikh otobrazhenii”, Izv. vuzov. Matem., 2016, no. 11, 1–6
[2] Ahlfors L., Weill G., “A uniqueness theorem for Beltrami equations”, Proc. Amer. Math. Soc., 13:6 (1962), 975–978 | DOI | MR | Zbl
[3] Becker J., “Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Functionen”, J. Reine Angew. Math., 255 (1972), 23–43 | MR | Zbl
[4] Becker J., “Löwnersche Differentialgleichung und Schlichtheitskriterien”, Math. Ann., 202:4 (1973), 321–335 | DOI | MR | Zbl
[5] Avkhadiev F. G., Aksentev L. A., “Osnovnye rezultaty v dostatochnykh usloviyakh odnolistnosti analiticheskikh funktsii”, UMN, 30:4 (1975), 3–60 | MR | Zbl
[6] Avkhadiev F. G., “Dostatochnye usloviya odnolistnosti kvazikonformnykh otobrazhenii”, Matem. zametki, 18:6 (1975), 793–802
[7] Ruscheweyh S., “An extension of Becker's univalence condition”, Math. Ann., 220:3 (1976), 285–290 | DOI | MR | Zbl
[8] Becker J., Pommerenke Ch., “Schlichtheitskriterien und Jordangebiete”, J. Reine Angew. Math., 354 (1984), 74–94 | MR | Zbl
[9] Avkhadiev F. G., “Dopustimye funktsionaly v usloviyakh odnolistnosti dlya differentsiruemykh otobrazhenii $n$-mernykh oblastei”, Izv. vuzov. Matem., 1989, no. 4, 3–12 | Zbl
[10] Avhadiev F. G., Kayumov I. R., “Admissible functionals and infinite-valent functions”, Complex Variables, 18:1 (1999), 35–45 | DOI | MR
[11] Hernandez R., Martin M. J., “Pre-Schwarzian and Schwarzian derivatives of harmonic mappings”, J. Geom. Anal., 25:1 (2015), 64–91 | DOI | MR | Zbl
[12] Chen Sh. L., Ponnusamy S., Rasila A., Wang X. T., “Linear connectivity, Schwarz–Pick lemma and univalency criteria for planar harmonic mapping”, Acta Mathematica Sinica, English Series, 32:3 (2016), 297–308 | DOI | MR | Zbl
[13] Avkhadiev F. G., “Funktsional Minkovskogo po oblastyam znachenii logarifma proizvodnoi i usloviya odnolistnosti”, Tr. semin. po kraev. zadacham, 27, 1992, 3–21
[14] Duren P. L., Shapiro M. S., Shields A. L., “Singular measures and domains not of Smirnov type”, Duke Math. J., 33:2 (1966), 247–254 | DOI | MR | Zbl
[15] Avkhadiev F. G., “Ob usloviyakh odnolistnosti analiticheskikh funktsii”, Izv. vuzov. Matem., 1970, no. 11, 3–13 | Zbl
[16] Avkhadiev F. G., “K dostatochnym usloviyam odnolistnosti reshenii obratnykh kraevykh zadach”, DAN SSSR, 1970, no. 3, 495–498
[17] Avkhadiev F. G., Konformnye otobrazheniya i kraevye zadachi, Monografii po matematike, Kazanskii fond “Matematika”, Kazan, 1996
[18] Gevirtz J., “An upper bound for the John constant”, Proc. Amer. Math. Soc., 83:3 (1981), 476–478 | DOI | MR | Zbl
[19] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[20] Avkhadiev F. G., Wirths K.-J., Schwarz–Pick type inequalities, Birkhäuser, Boston–Berlin–Bern, 2009 | MR | Zbl