Avkhadiev--Becker type multivalence conditions for harmonic mappings of a disc
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain Avkhadiev–Becker type multivalence conditions for locally univalent harmonic mappings defined in the unit disc.
Keywords: harmonic mapping, Becker univalence condition
Mots-clés : multivalence conditions.
@article{IVM_2017_3_a8,
     author = {R. G. Nasibullin and I. K. Shafigullin},
     title = {Avkhadiev--Becker type multivalence conditions for harmonic mappings of a disc},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--88},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a8/}
}
TY  - JOUR
AU  - R. G. Nasibullin
AU  - I. K. Shafigullin
TI  - Avkhadiev--Becker type multivalence conditions for harmonic mappings of a disc
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 84
EP  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_3_a8/
LA  - ru
ID  - IVM_2017_3_a8
ER  - 
%0 Journal Article
%A R. G. Nasibullin
%A I. K. Shafigullin
%T Avkhadiev--Becker type multivalence conditions for harmonic mappings of a disc
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 84-88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_3_a8/
%G ru
%F IVM_2017_3_a8
R. G. Nasibullin; I. K. Shafigullin. Avkhadiev--Becker type multivalence conditions for harmonic mappings of a disc. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 84-88. http://geodesic.mathdoc.fr/item/IVM_2017_3_a8/

[1] Avkhadiev F. G., Nasibullin R. G., Shafigullin I. K., “Usloviya odnolistnosti tipa Bekkera dlya garmonicheskikh otobrazhenii”, Izv. vuzov. Matem., 2016, no. 11, 1–6

[2] Ahlfors L., Weill G., “A uniqueness theorem for Beltrami equations”, Proc. Amer. Math. Soc., 13:6 (1962), 975–978 | DOI | MR | Zbl

[3] Becker J., “Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Functionen”, J. Reine Angew. Math., 255 (1972), 23–43 | MR | Zbl

[4] Becker J., “Löwnersche Differentialgleichung und Schlichtheitskriterien”, Math. Ann., 202:4 (1973), 321–335 | DOI | MR | Zbl

[5] Avkhadiev F. G., Aksentev L. A., “Osnovnye rezultaty v dostatochnykh usloviyakh odnolistnosti analiticheskikh funktsii”, UMN, 30:4 (1975), 3–60 | MR | Zbl

[6] Avkhadiev F. G., “Dostatochnye usloviya odnolistnosti kvazikonformnykh otobrazhenii”, Matem. zametki, 18:6 (1975), 793–802

[7] Ruscheweyh S., “An extension of Becker's univalence condition”, Math. Ann., 220:3 (1976), 285–290 | DOI | MR | Zbl

[8] Becker J., Pommerenke Ch., “Schlichtheitskriterien und Jordangebiete”, J. Reine Angew. Math., 354 (1984), 74–94 | MR | Zbl

[9] Avkhadiev F. G., “Dopustimye funktsionaly v usloviyakh odnolistnosti dlya differentsiruemykh otobrazhenii $n$-mernykh oblastei”, Izv. vuzov. Matem., 1989, no. 4, 3–12 | Zbl

[10] Avhadiev F. G., Kayumov I. R., “Admissible functionals and infinite-valent functions”, Complex Variables, 18:1 (1999), 35–45 | DOI | MR

[11] Hernandez R., Martin M. J., “Pre-Schwarzian and Schwarzian derivatives of harmonic mappings”, J. Geom. Anal., 25:1 (2015), 64–91 | DOI | MR | Zbl

[12] Chen Sh. L., Ponnusamy S., Rasila A., Wang X. T., “Linear connectivity, Schwarz–Pick lemma and univalency criteria for planar harmonic mapping”, Acta Mathematica Sinica, English Series, 32:3 (2016), 297–308 | DOI | MR | Zbl

[13] Avkhadiev F. G., “Funktsional Minkovskogo po oblastyam znachenii logarifma proizvodnoi i usloviya odnolistnosti”, Tr. semin. po kraev. zadacham, 27, 1992, 3–21

[14] Duren P. L., Shapiro M. S., Shields A. L., “Singular measures and domains not of Smirnov type”, Duke Math. J., 33:2 (1966), 247–254 | DOI | MR | Zbl

[15] Avkhadiev F. G., “Ob usloviyakh odnolistnosti analiticheskikh funktsii”, Izv. vuzov. Matem., 1970, no. 11, 3–13 | Zbl

[16] Avkhadiev F. G., “K dostatochnym usloviyam odnolistnosti reshenii obratnykh kraevykh zadach”, DAN SSSR, 1970, no. 3, 495–498

[17] Avkhadiev F. G., Konformnye otobrazheniya i kraevye zadachi, Monografii po matematike, Kazanskii fond “Matematika”, Kazan, 1996

[18] Gevirtz J., “An upper bound for the John constant”, Proc. Amer. Math. Soc., 83:3 (1981), 476–478 | DOI | MR | Zbl

[19] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[20] Avkhadiev F. G., Wirths K.-J., Schwarz–Pick type inequalities, Birkhäuser, Boston–Berlin–Bern, 2009 | MR | Zbl