On unique solvability of one nonlinear nonlocal with respect to a gradient solution of a nonstationary problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 78-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a parabolic equation whose space operator is a product of nonlinear bounded function which depends on nonlocal characteristic with respect to a solution gradient and strongly monotone, potential operator. We prove the existence and uniqueness of the solution in the class of the vector-valued functions with values in the Sobolev space.
Mots-clés : parabolic equation
Keywords: strongly monotone operator, nonlocal operator, generalized solution, solvability, uniqueness.
@article{IVM_2017_3_a7,
     author = {A. S. Ivanova and M. F. Pavlova},
     title = {On unique solvability of one nonlinear nonlocal with respect to a gradient solution of a nonstationary problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {78--83},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a7/}
}
TY  - JOUR
AU  - A. S. Ivanova
AU  - M. F. Pavlova
TI  - On unique solvability of one nonlinear nonlocal with respect to a gradient solution of a nonstationary problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 78
EP  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_3_a7/
LA  - ru
ID  - IVM_2017_3_a7
ER  - 
%0 Journal Article
%A A. S. Ivanova
%A M. F. Pavlova
%T On unique solvability of one nonlinear nonlocal with respect to a gradient solution of a nonstationary problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 78-83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_3_a7/
%G ru
%F IVM_2017_3_a7
A. S. Ivanova; M. F. Pavlova. On unique solvability of one nonlinear nonlocal with respect to a gradient solution of a nonstationary problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 78-83. http://geodesic.mathdoc.fr/item/IVM_2017_3_a7/

[1] Zheng S., Chipot M., “Nonlinear nonlocal evolution problems”, Asymptot. Anal., 45:3–4 (2005), 301–312 | MR | Zbl

[2] Chang N.-H., Chipot M., “Nonlinear nonlocal evolution problems”, RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 97:3 (2003), 423–445 | MR | Zbl

[3] Chipot M., Molinet L., “Asymptotic behavior of some nonlocal diffusion problems”, Appl. Anal., 80:3/4 (2001), 279–315 | MR | Zbl

[4] Chipot M., Lovat B., “Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems”, Dyn. Contin. Discrete Impuls. Syst., Ser. A: Math. Anal., 8:1 (2001), 35–51 | MR | Zbl

[5] Pavlova M. F., “On the solvability of nonlocal nonstationary problems with double degeneration”, Diff. Equat., 47:8 (2011), 1161–1175 | DOI | MR | Zbl

[6] Glazyrina O. V., Pavlova M. F., “On the unique solvability of a certain nonlocal nonlinear problem with a spatial operator strongly monotone with respect to the gradient”, Russ. Math., 56:3 (2012), 83–86 | DOI | Zbl

[7] Glazyrina O. V., Pavlova M. F., “On the solvability of an evolution variational inequality with a nonlocal space operator”, Diff. Equat., 50:7 (2014), 873–887 | DOI | MR | Zbl

[8] Glazyrina O. V., Pavlova M. F., “Study of the convergence of the finite-element method for solving parabolic equations with a nonlinear nonlocal space operator”, Diff. Equat., 51:7 (2015), 876–889 | DOI | MR | Zbl

[9] Karchevskii M. M., Pavlova M. F., Uravneniya matematicheskoi fiziki. Dopolnitelnye glavy, Lan, Sankt-Peterburg, 2016