Full classification of isotopically invariant varieties of analytic loops defined by right identities of length four
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 68-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using three-web theory we give a full classification of isotopically invariant varieties of analytic loops defined by right identities of length four.
Keywords: multidimensional three-web, analytic loop, universal identity, right identity, isotopically invariant variety of loops.
@article{IVM_2017_3_a6,
     author = {A. M. Shelekhov},
     title = {Full classification of isotopically invariant varieties of analytic loops defined by right identities of length four},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {68--77},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a6/}
}
TY  - JOUR
AU  - A. M. Shelekhov
TI  - Full classification of isotopically invariant varieties of analytic loops defined by right identities of length four
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 68
EP  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_3_a6/
LA  - ru
ID  - IVM_2017_3_a6
ER  - 
%0 Journal Article
%A A. M. Shelekhov
%T Full classification of isotopically invariant varieties of analytic loops defined by right identities of length four
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 68-77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_3_a6/
%G ru
%F IVM_2017_3_a6
A. M. Shelekhov. Full classification of isotopically invariant varieties of analytic loops defined by right identities of length four. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 68-77. http://geodesic.mathdoc.fr/item/IVM_2017_3_a6/

[1] Suschkewitsch A. K., “On a generalization of the associative law”, Trans. Amer. Math. Soc., 31:1 (1929), 204–214 | DOI | MR | Zbl

[2] Moufang R., “Zur Struktur von Alternativ Körpern”, Math. Ann., 110:1 (1935), 416–430 | DOI | MR

[3] Bol G., “Gewebe und Gruppen”, Math. Ann., 114:1 (1937), 414–431 | DOI | MR

[4] Murdoch D. C., “Quasi-groups which satisfy certain generalized associative laws”, Amer. J. Math., 61:2 (1939), 509–522 | DOI | MR

[5] Albert A. A., “Quasigroups. I”, Trans. Amer. Math. Soc., 54:3 (1943), 507–519 | DOI | MR | Zbl

[6] Albert A. A., “Quasigroups. II”, Trans. Amer. Math. Soc., 55:3 (1944), 401–409 | DOI | MR

[7] Bruck R. H., “Some results in the theory of quasigroups”, Trans. Amer. Math. Soc., 56:2 (1944), 141–199 | DOI | MR | Zbl

[8] Bruck R. H., “Contributions to the theory of loops”, Trans. Amer. Math. Soc., 60:2 (1946), 245–354 | DOI | MR | Zbl

[9] Maltsev A. I., “Analiticheskie lupy”, Matem. sb., 36:3 (1955), 569–575

[10] Bruck R. H., A survey of binary systems, Springer Verlag, 1958 | MR | Zbl

[11] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967

[12] Pflugfelder Hala O., Quasigroups and loops. Introduction, Sigma series in pure mathematics, 7, Heldeman Verlag, Berlin, 1990 | MR | Zbl

[13] Chein O., Pflugfelder H. O., Smith J. D. H., Quasigroups and loops. Theory and Applications, Sigma series in pure mathematics, 8, Heldeman Verlag, Berlin, 1990 | MR

[14] Sade A., “Entropie demosienne de multigroupoides et de quasigroupes”, Ann. Soc. Sci.Bruxelles, Sér I., 73:3 (1959), 302–309 | MR | Zbl

[15] Belousov V. D., “Uravnoveshennye tozhdestva v kvazigruppakh”, Matem. sb., 70:1 (1966), 55–97 | Zbl

[16] Belousov V. D., “Balanced identities in algebras of quasigroups”, Aequationes Math., 8:1–2 (1972), 1–73 | DOI | MR | Zbl

[17] Falcone E., “Isotopy invariants in quasigroups”, Trans. Amer. Math. Soc., 151:2 (1970), 511–526 | DOI | MR | Zbl

[18] Vechtomov V. E., “O figurakh zamykaniya dlya odnogo klassa universalnykh tozhdestv”, Matem. issl., 10:2 (1975), 26–63

[19] Akivis M. A., Shelekhov A. M., Geometry and algebra of multidimensional three-webs, Kluwer Academic Publishers, Dordrecht–Boston–London, 1992 | MR | Zbl

[20] Akivis M. A., Shelekhov A. M., Mnogomernye tri-tkani i ikh prilozheniya, Tverskoi gos. un-t, Tver, 2010

[21] Shelekhov A. M., Lazareva V. B., Utkin A. A., Krivolineinye tri-tkani, Tverskoi gos. un-t, Tver, 2013

[22] Fenyves F., “Extra loops. I”, Publ. Math. Debrecen, 15 (1968), 235–238 | MR | Zbl

[23] Fenyves F., “Extra Loops. II. On loops with identitites of Bol–Moufang type”, Publ. Math. Debrecen, 16 (1969), 187–192 | MR

[24] Phillips J. D., Vojtĕchovský P., “The varieities of loops of Bol–Moufang type”, Algebra Universalis, 54:3 (2005), 259–271 | DOI | MR | Zbl

[25] Phillips J. D., Vojtĕchovský P., “The varieities of quasigroups of Bol–Moufang type: An equational reasoning approach”, J. Algebra, 293:1 (2005), 17–33 | DOI | MR | Zbl

[26] Cheban A. M., “Lupy s tozhdestvami dliny $4$ i ranga $3$. II”, Obschaya algebra i diskretnaya geometriya, Shtiintsa, Kishinev, 1980, 117–120

[27] Coté B., Harvill B., Huhn M., Kirshman A., “Classification of loops of generalized Bol–Moufang type”, Quasigroup and Related Systems, 19:2 (2011), 193–206 | MR | Zbl

[28] Vechtomov V. E., “Ob odnom tipe universalnykh tozhdestv v lupakh”, Tez. dokl. Vsesoyuzn. geometrich. simpoziuma v Gomele (Gomel, 1975), v. II, 1975, 256–258

[29] Shelekhov A. M., O tpi-tkanyakh s elastichnymi koopdinatnymi lupami, Dep. v VINITI, No 8465-V87, Kalininskii gos. un-t, Kalinin, 1987

[30] Shelekhov A. M., “Ob analiticheskikh pesheniyakh upavneniya $x(yx)=(xy)x$”, Matem. zametki, 50:4 (1991), 132–140 | Zbl

[31] Shelekhov A. M., “New closure conditions and some problems in loop theory”, Aequationes Math., 41:1 (1991), 79–84 | DOI | MR | Zbl

[32] Shelekhov A. M., “The isotopically invariant loop variety lying between Moufang loop variety and Bol loop variety”, Proc. of the 3rd Internat. Congress in Geometry (Thessaloniki, Greece, 1991), 1992, 376–384 | MR | Zbl

[33] Shelekhov A. M., “Tozhdestva s odnoi peremennoi v lupakh, ekvivalentnye monoassotsiativnosti”, Probl. teorii tkanei i kvazigrupp, Kalininskii gos. un-t, Kalinin, 1985, 89–93

[34] Shelekhov A. M., “Klassifikatsiya mnogomepnykh tpi-tkanei po usloviyam zamykaniya”, Itogi nauki i tekhn. Ser. Probl. geom., 21, 1989, 109–154 | Zbl

[35] Billig V. A., Shelekhov A. M., “O klassifikatsii tozhdestv s odnoi pepemennoi v gladkoi lokalnoi lupe”, Tkani i kvazigpuppy, Kalininskii gos. un-t, Kalinin, 1987, 24–32 | MR | Zbl

[36] Billig V. A., Shelekhov A. M., “Klassifikatsiya tozhdestv dliny $12$ popyadka $4$ s odnoi pepemennoi v lokalnoi analiticheskoi lupe”, Tkani i kvazigpuppy, Kalininskii gos. un-t, Kalinin, 1990, 10–18 | MR

[37] Aczel J., “Quasigroups, nets and nomograms”, Adv. Math., 1:3 (1965), 383–450 | DOI | MR | Zbl