On asymptotic properties of solutions defined on a half-axis to one semilinear ordinary differential equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 58-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider solutions to the semilinear ordinary differential equation with a nonlinear term of Emden–Fowler type. The results about the asymptotic behavior of the solutions to the Emden–Fowler equation defined in a neighborhood of infinity, presented in the book of R. Bellman, are extended to the case of equation with lower-order derivative.
Keywords: ordinary differential equation, nonlinear equation, semilinear equation, Emden–Fowler equation, asymptotic behavior of solutions, maximum principle.
Mots-clés : positive solution, existence of solution
@article{IVM_2017_3_a5,
     author = {I. V. Filimonova and T. S. Khachlaev},
     title = {On asymptotic properties of solutions defined on a half-axis to one semilinear ordinary differential equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--67},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a5/}
}
TY  - JOUR
AU  - I. V. Filimonova
AU  - T. S. Khachlaev
TI  - On asymptotic properties of solutions defined on a half-axis to one semilinear ordinary differential equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 58
EP  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_3_a5/
LA  - ru
ID  - IVM_2017_3_a5
ER  - 
%0 Journal Article
%A I. V. Filimonova
%A T. S. Khachlaev
%T On asymptotic properties of solutions defined on a half-axis to one semilinear ordinary differential equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 58-67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_3_a5/
%G ru
%F IVM_2017_3_a5
I. V. Filimonova; T. S. Khachlaev. On asymptotic properties of solutions defined on a half-axis to one semilinear ordinary differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 58-67. http://geodesic.mathdoc.fr/item/IVM_2017_3_a5/

[1] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, In. lit., M., 1954

[2] Kiguradze I. T., “Asimptoticheskie svoistva reshenii odnogo nelineinogo differentsialnogo uravneniya tipa Emdena–Faulera”, Izv. AN SSSR. Ser. matem., 29:5 (1965), 965–986 | Zbl

[3] Khachlaev T. S., “Asimptoticheskoe povedenie reshenii polulineinogo ellipticheskogo uravneniya s rastuschim koeffitsientom v tsilindricheskoi oblasti”, UMN, 59:2 (2004), 185–186 | DOI | MR

[4] Astashova I., “On asymptotic behavior of solutions to a quasi-linear second order differential equations”, Funct. Diff. Equat., 16:1 (2009), 93–115 | MR | Zbl

[5] Surnachev M. D., “Ob asimptotike polozhitelnykh reshenii uravnenii tipa Emdena–Faulera”, Probl. matem. analiza, 2011, no. 59, 129–176 | Zbl

[6] Surnachev M., “Estimates for Emden–Fowler type inequalities with absorption term”, J. Math. Anal. Appl., 348:2 (2008), 996–1011 | DOI | MR | Zbl

[7] Filimonova I. V., “O povedenii reshenii polulineinogo parabolicheskogo ili ellipticheskogo uravneniya, udovletvoryayuschikh nelineinomu kraevomu usloviyu, v tsilindricheskoi oblasti”, Tr. seminara im. I. G. Petrovskogo, 26, 2007, 369–390

[8] Mirazai A. A., “O povedenii reshenii slabonelineinykh ellipticheskikh uravnenii vtorogo poryadka v neogranichennykh oblastyakh”, Vestn. Moskovsk. un-ta., Ser. 1. Matem. Mekhan., 1994, no. 4, 6–8 | MR

[9] Atkinson F. V., “On second order nonlinear oscillations”, Pacif. J. Math., 5, Suppl. 1 (1955), 643–647 | DOI | MR | Zbl