Harmonic and conformally Killing forms on complete Riemannian manifold
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 51-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a classification of complete locally irreducible Riemannian manifolds with nonnegative curvature operator, which admit a nonzero and nondecomposable harmonic form with its square-integrable norm. We prove a vanishing theorem for harmonic forms on complete generic Riemannian manifolds with nonnegative curvature operator. We obtain similar results for closed and co-closed conformal Killing forms.
Keywords: complete Riemannian manifold, curvature operator, harmonic forms, conformal Killing forms, classification theorem, vanishing theorem.
@article{IVM_2017_3_a4,
     author = {S. E. Stepanov and I. I. Tsyganok and T. V. Dmitrieva},
     title = {Harmonic and conformally {Killing} forms on complete {Riemannian} manifold},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--57},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a4/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. I. Tsyganok
AU  - T. V. Dmitrieva
TI  - Harmonic and conformally Killing forms on complete Riemannian manifold
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 51
EP  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_3_a4/
LA  - ru
ID  - IVM_2017_3_a4
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. I. Tsyganok
%A T. V. Dmitrieva
%T Harmonic and conformally Killing forms on complete Riemannian manifold
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 51-57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_3_a4/
%G ru
%F IVM_2017_3_a4
S. E. Stepanov; I. I. Tsyganok; T. V. Dmitrieva. Harmonic and conformally Killing forms on complete Riemannian manifold. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 51-57. http://geodesic.mathdoc.fr/item/IVM_2017_3_a4/

[1] Hodge W. V. D., The theory and applications of harmonic integrals, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[2] De Ram Zh., Differentsiruemye mnogoobraziya, In. lit., M., 1956

[3] Yau S.-T., “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana Univ. Math. J., 25:7 (1976), 659–670 | DOI | MR | Zbl

[4] Petersen P., Riemannian Geometry, Springer, New York, 2006 | MR | Zbl

[5] Tachibana S., “On conformal Killing tensor in a Riemannian space”, Tohoku Math. J., 21:1 (1969), 56–64 | DOI | MR | Zbl

[6] Kashiwada T., “On conformal Killing tensor”, Natural. Sci. Rep. Ochanomizu Univ., 19:2 (1968), 67–74 | MR | Zbl

[7] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v. 1, Nauka, M., 1981

[8] Tachibana S., Yamaguchi S., “The first proper space of for $p$-forms in compact Riemannian manifolds of positive curvature operator”, J. Diff. Geom., 15:1 (1980), 51–60 | MR | Zbl

[9] Moroianu A., Semmelmann U., “Twistor forms on Kähler manifolds”, Ann. Sc. Norm. Super Pisa Cl. Sci. (5), 2:4 (2003), 823–845 | MR | Zbl

[10] Semmelmann U., “Conformal Killing forms on Riemannian manifolds”, Math. Z., 245:3 (2003), 503–527 | DOI | MR | Zbl

[11] Belgun F., Moroianu A., Semmelmann U., “Killing forms on symmetric spaces”, Diff. Geom. Appl., 24:3 (2006), 215–222 | DOI | MR | Zbl

[12] Stepanov S. E., “On conformal Killing $2$-form of the electromagnetic field”, J. Geom. Phys., 33:3–4 (2000), 191–209 | DOI | MR | Zbl

[13] Stepanov S. E., “A class of closed forms and special Maxwell's equations”, Tensor (N. S.), 58:3 (1997), 233–242 | MR | Zbl

[14] Stepanov S. E., Mikeš J., “Betti and Tachibana numbers”, Miskolc Math. Notes, 14:3 (2013), 265–276 | MR

[15] Stepanov S. E., Mikeš J., “Betti and Tachibana numbers of compact Riemannian manifolds”, Diff. Geom. Appl., 31:4 (2013), 486–495 | DOI | MR | Zbl

[16] Stepanov C. E., “Krivizna i chisla Tachibany”, Matem. sb., 202:7 (2011), 135–146 | DOI | Zbl

[17] Bourguignon J. P., “Formules de Weitzenbok en dimension 4”, Sèminare A. Besse sur la géométrie Riemannienne dimension 4, Cedic. Ferman, Paris, 1981, 308–331 | MR

[18] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990

[19] Bérard P. H., “From vanishing theorems to estimating theorems: the Bochner technique revisited”, Bull. Amer. Math. Soc. (N. S.), 19:2 (1988), 371–406 | DOI | MR | Zbl

[20] Kora M., “On conformal Killing forms and the proper space $D$ for $p$-forms”, Math. J. Okayama Univ., 22:2 (1980), 195–204 | MR | Zbl

[21] Stepanov S. E., “Novyi silnyi laplasian na differentsialnykh formakh”, Matem. zametki, 76:3 (2004), 452–458 | DOI | Zbl

[22] Stepanov S. E., Tsyganok I. I., “Sravnitelnyi analiz spektralnykh svoistv operatorov Khodzha–de Rama i Tachibany”, Itogi nauki i tekhn. VINITI RAN. Ser. Sovremen. matem. i ee prilozh. Tematicheskie obzory, 127, 2014, 151–182

[23] Stepanov S. E., Mikesh I., “Laplasian Khodzha–de Rama i operator Tachibany na kompaktnom rimanovom mnogoobrazii so znakoopredelennym operatorom krivizny”, Izv. RAN. Ser. matem., 79:2 (2015), 167–180 | DOI

[24] Scott C., “$L^p$ theory of differential forms on manifolds”, Trans. Amer. Math. Soc., 247:6 (1995), 2075–2096 | MR