A.A.~Dezin's problem for inhomogeneous Lavrent'ev--Bitsadze equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 37-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a criterion for the uniqueness of a solution to nonlocal Dezin's problem for an equation of mixed elliptic-hyperbolic type. The solution is constructed in the form of a sum of a series in eigenfunctions of the corresponding one-dimensional spectral problem. In substantiation of the convergence of series a problem of small denominators arizes. Under certain specified conditions with respect to given pagameters and functions we prove the convergence of constructed series in a class of regular solutions.
Keywords: inhomogeneous equation of mixed type, nonlocal problem, inhomogeneous boundary condition, spectral method, uniqueness, series.
Mots-clés : existence
@article{IVM_2017_3_a3,
     author = {K. B. Sabitov and V. A. Gushchina (Novikova)},
     title = {A.A.~Dezin's problem for inhomogeneous {Lavrent'ev--Bitsadze} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--50},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a3/}
}
TY  - JOUR
AU  - K. B. Sabitov
AU  - V. A. Gushchina (Novikova)
TI  - A.A.~Dezin's problem for inhomogeneous Lavrent'ev--Bitsadze equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 37
EP  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_3_a3/
LA  - ru
ID  - IVM_2017_3_a3
ER  - 
%0 Journal Article
%A K. B. Sabitov
%A V. A. Gushchina (Novikova)
%T A.A.~Dezin's problem for inhomogeneous Lavrent'ev--Bitsadze equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 37-50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_3_a3/
%G ru
%F IVM_2017_3_a3
K. B. Sabitov; V. A. Gushchina (Novikova). A.A.~Dezin's problem for inhomogeneous Lavrent'ev--Bitsadze equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 37-50. http://geodesic.mathdoc.fr/item/IVM_2017_3_a3/

[1] Dezin A. A., “On the solvable extensions of partial differential operators”, Outlines of the Joint Soviet–American Symposium on Partial Diff. Equat. (Novosibirsk, 1963), 65–66

[2] Dezin A. A., “Operatory s pervoi proizvodnoi po vremeni i nelokalnye granichnye usloviya”, Izv. AN SSSR, 31:1 (1967), 61–86 | Zbl

[3] Nakhusheva Z. A., “Ob odnoi nelokalnoi zadache A. A. Dezina dlya uravneniya Lavrenteva–Bitsadze”, Differents. uravneniya, 45:8 (2009), 1199–2003

[4] Nakhusheva Z. A., Nelokalnye kraevye zadachi dlya osnovnykh i smeshannykh tipov differentsialnykh uravnenii, Izd-vo KBNTs RAN, Nalchik, 2011

[5] Sabitov K. B., Novikova V. A., “Nelokalnaya zadacha A. A. Dezina dlya uravneniya Lavrenteva–Bitsadze”, Izv. vuzov. Matem., 2016, no. 6, 61–72

[6] Frankl F. I., “Obtekanie profilei potokom dozvukovoi skorosti so sverkhzvukovoi zonoi, okanchivayuscheisya pryamym skachkom uplotneniya”, PMM, 20:2 (1956), 196–202 | Zbl

[7] Zhegalov V. I., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s granichnym usloviem na obeikh kharakteristikakh i s razryvami na perekhodnoi linii”, Uchen. zap. Kazansk. un-ta, 122, no. 3, 1962, 3–16 | Zbl

[8] Nakhushev A. M., “O nekotorykh novykh kraevykh zadachakh dlya giperbolicheskikh uravnenii i uravnenii smeshannogo tipa”, Differents. uravneniya, 5:1 (1969), 44–69

[9] Sabitov K. B., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa”, Dokl. RAN, 413:1 (2007), 23–26 | Zbl

[10] Sabitov K. B., Sidorenko O. G., “Zadacha s usloviyami periodichnosti dlya vyrozhdayuschegosya uravneniya smeshannogo tipa”, Differents. uravneniya, 46:1 (2010), 105–113

[11] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192 | MR | Zbl