Differential-geometric structure associated with Lagrangian and its dynamic interpretation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 24-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to investigation of differential-geometric structure associated with Lagrangian $L$ depending of $n$ functions of one variable $t$ and their derivatives by means of Cartan–Laptev method. We construct a fundamental object of a structure associated with Lagrangian. We also construct a covector $E_i$ $(i=1,\dotsc,n)$ embraced by prolonged fundamental object so that the system of equalities $E_i=0$ is an invariant representation of the Euler equations for the variational functional. Due to this, there is no necessity to connect Euler equations with the variational problem. Moreover, we distinguish by invariant means the class of special Lagrangians generating connection in the bundle of centroaffine structure over the base $M$. In case when Lagrangian $L$ is special, there exist a relative invariant $\Pi$ defined on $M$ which generates covector field on $M$ and fibered metric in the bundle of centroaffine structure over the base $M$.
Keywords: differential-geometric structure, fundamental object, lagrangian, fiber bundle, connection in principal fibre bundle.
@article{IVM_2017_3_a2,
     author = {A. K. Rybnikov},
     title = {Differential-geometric structure associated with {Lagrangian} and its dynamic interpretation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {24--36},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_3_a2/}
}
TY  - JOUR
AU  - A. K. Rybnikov
TI  - Differential-geometric structure associated with Lagrangian and its dynamic interpretation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 24
EP  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_3_a2/
LA  - ru
ID  - IVM_2017_3_a2
ER  - 
%0 Journal Article
%A A. K. Rybnikov
%T Differential-geometric structure associated with Lagrangian and its dynamic interpretation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 24-36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_3_a2/
%G ru
%F IVM_2017_3_a2
A. K. Rybnikov. Differential-geometric structure associated with Lagrangian and its dynamic interpretation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2017), pp. 24-36. http://geodesic.mathdoc.fr/item/IVM_2017_3_a2/

[1] Vasilev A. M., Teoriya differentsialno-geometricheskikh struktur, Izd-vo MGU, M., 1987

[2] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Probl. geom., 9, 1972, 5–246

[3] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Tr. geometrich. semin., 1, VINITI AN SSSR, 1966, 139–189

[4] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii. Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. Moskovsk. matem. o-va, 2, 1953, 275–382 | Zbl

[5] Laptev G. F., “Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. 3-go Vsesoyuzn. matem. s'ezda (Moskva, 1956), v. 3, AN SSSR, M., 1958, 409–418

[6] Laptev G. F., “Strukturnye uravneniya glavnogo rassloennogo mnogoobraziya”, Tr. geometrich. semin., 2, VINITI AN SSSR, 1969, 161–178

[7] Lantsosh K., Variatsionnye printsipy mekhaniki, Mir, M., 1965

[8] Elsgolts L. E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1965