Canonical frame of a curve on a conformal plane
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 76-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown how one can investigate a differential geometry of smooth curve on conformal plane by the Elie Cartan method of exterior forms and moving frame. We find the canonical form of the derivation equations of a curve (the latter not being a circle) in case of semi-isotropic frame. We give a new proof of the theorem that the constant (specifically, zero) conformal curvature curves are the rhumb line. We integrate a system of structure equations of the isotropy subgroup of a point.
Keywords: Elie Cartan method of exterior forms and moving frame, conformal geometry, conformal curvature of a curve, isotropy subgroup, canonical equations of a plane curve.
@article{IVM_2017_2_a7,
     author = {A. M. Shelekhov},
     title = {Canonical frame of a curve on a conformal plane},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--87},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_2_a7/}
}
TY  - JOUR
AU  - A. M. Shelekhov
TI  - Canonical frame of a curve on a conformal plane
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 76
EP  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_2_a7/
LA  - ru
ID  - IVM_2017_2_a7
ER  - 
%0 Journal Article
%A A. M. Shelekhov
%T Canonical frame of a curve on a conformal plane
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 76-87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_2_a7/
%G ru
%F IVM_2017_2_a7
A. M. Shelekhov. Canonical frame of a curve on a conformal plane. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 76-87. http://geodesic.mathdoc.fr/item/IVM_2017_2_a7/

[1] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Izd-vo Kazansk. un-ta, Kazan, 1962

[2] Fialkow A., “The conformal theory of curves”, Trans. Amer. Math. Soc., 51:3 (1942), 435–501 | DOI | MR | Zbl

[3] Blaschke W., Vorlesungen über Differentialgeometrie, v. III, Differentialgeometrie der Kreise und Kugeln, Berlin, 1929

[4] Blaschke W., Thomsen G., Vorlesungen über Differentialgeometrie, v. 3, 1929

[5] Takasu T., Differentialgeometrien in den Kugelraumen, v. 1, 1938

[6] Bushmanova G. V., Norden A. P., Elementy konformnoi geometrii, Kazansk. un-t, 1972 | MR

[7] Akivis M. A., Goldberg V. V., Conformal differential geometry and its generalizations, A Wiley-Interscience Publ., John Wiley and Sons, Inc., New York–Chichester–Brisbane–Toronto–Singapore, 1996 | MR | Zbl