Canonical frame of a curve on a conformal plane
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 76-87
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown how one can investigate a differential geometry of smooth curve on conformal plane by the Elie Cartan method of exterior forms and moving frame. We find the canonical form of the derivation equations of a curve (the latter not being a circle) in case of semi-isotropic frame. We give a new proof of the theorem that the constant (specifically, zero) conformal curvature curves are the rhumb line. We integrate a system of structure equations of the isotropy subgroup of a point.
Keywords:
Elie Cartan method of exterior forms and moving frame, conformal geometry, conformal curvature of a curve, isotropy subgroup, canonical equations of a plane curve.
@article{IVM_2017_2_a7,
author = {A. M. Shelekhov},
title = {Canonical frame of a curve on a conformal plane},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {76--87},
publisher = {mathdoc},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_2_a7/}
}
A. M. Shelekhov. Canonical frame of a curve on a conformal plane. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 76-87. http://geodesic.mathdoc.fr/item/IVM_2017_2_a7/