@article{IVM_2017_2_a7,
author = {A. M. Shelekhov},
title = {Canonical frame of a curve on a conformal plane},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {76--87},
year = {2017},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_2_a7/}
}
A. M. Shelekhov. Canonical frame of a curve on a conformal plane. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 76-87. http://geodesic.mathdoc.fr/item/IVM_2017_2_a7/
[1] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Izd-vo Kazansk. un-ta, Kazan, 1962
[2] Fialkow A., “The conformal theory of curves”, Trans. Amer. Math. Soc., 51:3 (1942), 435–501 | DOI | MR | Zbl
[3] Blaschke W., Vorlesungen über Differentialgeometrie, v. III, Differentialgeometrie der Kreise und Kugeln, Berlin, 1929
[4] Blaschke W., Thomsen G., Vorlesungen über Differentialgeometrie, v. 3, 1929
[5] Takasu T., Differentialgeometrien in den Kugelraumen, v. 1, 1938
[6] Bushmanova G. V., Norden A. P., Elementy konformnoi geometrii, Kazansk. un-t, 1972 | MR
[7] Akivis M. A., Goldberg V. V., Conformal differential geometry and its generalizations, A Wiley-Interscience Publ., John Wiley and Sons, Inc., New York–Chichester–Brisbane–Toronto–Singapore, 1996 | MR | Zbl