Grassman image of non-isotropic surface of pseudo-euclidean space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 65-75
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider submanifolds of non-isotropic planes of the Grassman manifold of the pseudo-Euclidean space. We prove a theorem about the unboundedness of the sectional curvature of the submanifolds of the two-dimensional non-isotropic planes of the four-dimensional pseudo-Euclidean space with the help of immersion in the six-dimensional pseudo-Euclidean space of index 3. We also introduce a concept of the indicatrix of normal curvature and study the properties of this indicatrix and the Grassman image of the non-isotropic surface of the pseudo-Euclidean space. We find a connection between the curvature of the Grassman image and the intrinsic geometry of the plane. We suggest the classification of the points of the Grassman image.
Keywords:
pseudo-Euclidean space, Grassman manifold, sectional curvature, Grassman image of the surface, indicatrix of the normal curvature.
@article{IVM_2017_2_a6,
author = {P. G. Stegantseva and M. A. Grechneva},
title = {Grassman image of non-isotropic surface of pseudo-euclidean space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {65--75},
publisher = {mathdoc},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_2_a6/}
}
TY - JOUR AU - P. G. Stegantseva AU - M. A. Grechneva TI - Grassman image of non-isotropic surface of pseudo-euclidean space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 65 EP - 75 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_2_a6/ LA - ru ID - IVM_2017_2_a6 ER -
P. G. Stegantseva; M. A. Grechneva. Grassman image of non-isotropic surface of pseudo-euclidean space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2017), pp. 65-75. http://geodesic.mathdoc.fr/item/IVM_2017_2_a6/