A problem on branchistochrone as invariant variational problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 92-96
Cet article a éte moissonné depuis la source Math-Net.Ru
Based on the modified theory of invariant variational problems developed by the author, we describe a theoretical group approach to solving a problem of branchistochrone.
Mots-clés :
branchistochrone, conformal invariance
Keywords: functional, first integral, infinitesimal operator, time of steepest descent.
Keywords: functional, first integral, infinitesimal operator, time of steepest descent.
@article{IVM_2017_1_a9,
author = {K. G. Garaev},
title = {A problem on branchistochrone as invariant variational problem},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {92--96},
year = {2017},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_1_a9/}
}
K. G. Garaev. A problem on branchistochrone as invariant variational problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 92-96. http://geodesic.mathdoc.fr/item/IVM_2017_1_a9/
[1] Polak R. S., Variatsionnye printsipy mekhaniki, GIFML, M., 1960
[2] Akhiezer N. I., Lektsii po variatsionnomu ischisleniyu, GITTL, M., 1955
[3] Garaev K. G., “Zamechanie k teorii Nëter”, Izv. vuzov. Matem., 1989, no. 5, 69–71
[4] Noether E., “Invariant variational problems”, Gött. Nachr., 1918, 235–257 | MR | Zbl
[5] Bessel-Hagen E., “Über die Erhaltungssätze der Electrodynamik”, Math. Ann., 84:3–4 (1921), 258–276 | DOI | MR | Zbl
[6] Steudel H., “Eine Erweiterung des ersten Noetherschen Satzes”, Z. Naturforsch, 17A (1962), 133–135 | MR
[7] Ibragimov N. Kh., “Invariantnye variatsionnye zadachi i ikh zakony sokhraneniya”, Teoret. i matem. fizika, 1:3 (1969), 350–359 | MR