Two classes of $\tau$-measurable operators affiliated with a von Neumann algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 86-91
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal{M}$ be a von Neumann algebra of operators on a Hilbert space $\mathcal{H}$, $\tau$ be a faithful normal semifinite trace on $\mathcal{M}$. We define two (closed in the topology of convergence in measure $\tau$) classes $\mathcal{P}_1$ and $\mathcal{P}_2$ of $\tau$-measurable operators and investigate their properties. The class $ \mathcal{P}_1$ is contained in $ \mathcal{P}_2$. If a $\tau$-measurable operator $T$ is hyponormal, then $T$ lies in $ \mathcal{P}_1$; if an operator $T$ lies in $\mathcal{P}_k$, then $UTU^*$ belongs to $ \mathcal{P}_k$ for all isometries $U $ from $\mathcal{M}$ and $k=1,2$; if an operator $T$ from $ \mathcal{P}_1$ has the bounded inverse $T^{-1} $, then $T^{-1}$ lies in $\mathcal{P}_1$. We establish some new inequalities for rearrangements of operators from $ \mathcal{P}_1$. If a $\tau$-measurable operator $T $ is hyponormal and $T^n $ is $\tau$-compact for some natural number $n$, then $T $ is normal and $\tau$-compact. If $\mathcal{M}=\mathcal{B}(\mathcal{H})$ and $\tau=\mathrm{tr}$, then the class $\mathcal{P}_1$ coincides with the set of all paranormal operators on $\mathcal{H}$.
Keywords:
Hilbert space, von Neumann algebra, normal trace, $\tau$-measurable operator, rearrangement, topology of convergence in measure, $\tau$-compact operator, integrable operator, hyponormal operator, quasinormal operator, paranormal operator, projection.
@article{IVM_2017_1_a8,
author = {A. M. Bikchentaev},
title = {Two classes of $\tau$-measurable operators affiliated with a von {Neumann} algebra},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {86--91},
publisher = {mathdoc},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2017_1_a8/}
}
A. M. Bikchentaev. Two classes of $\tau$-measurable operators affiliated with a von Neumann algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2017_1_a8/