Two classes of $\tau$-measurable operators affiliated with a von Neumann algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{M}$ be a von Neumann algebra of operators on a Hilbert space $\mathcal{H}$, $\tau$ be a faithful normal semifinite trace on $\mathcal{M}$. We define two (closed in the topology of convergence in measure $\tau$) classes $\mathcal{P}_1$ and $\mathcal{P}_2$ of $\tau$-measurable operators and investigate their properties. The class $ \mathcal{P}_1$ is contained in $ \mathcal{P}_2$. If a $\tau$-measurable operator $T$ is hyponormal, then $T$ lies in $ \mathcal{P}_1$; if an operator $T$ lies in $\mathcal{P}_k$, then $UTU^*$ belongs to $ \mathcal{P}_k$ for all isometries $U $ from $\mathcal{M}$ and $k=1,2$; if an operator $T$ from $ \mathcal{P}_1$ has the bounded inverse $T^{-1} $, then $T^{-1}$ lies in $\mathcal{P}_1$. We establish some new inequalities for rearrangements of operators from $ \mathcal{P}_1$. If a $\tau$-measurable operator $T $ is hyponormal and $T^n $ is $\tau$-compact for some natural number $n$, then $T $ is normal and $\tau$-compact. If $\mathcal{M}=\mathcal{B}(\mathcal{H})$ and $\tau=\mathrm{tr}$, then the class $\mathcal{P}_1$ coincides with the set of all paranormal operators on $\mathcal{H}$.
Keywords: Hilbert space, von Neumann algebra, normal trace, $\tau$-measurable operator, rearrangement, topology of convergence in measure, $\tau$-compact operator, integrable operator, hyponormal operator, quasinormal operator, paranormal operator, projection.
@article{IVM_2017_1_a8,
     author = {A. M. Bikchentaev},
     title = {Two classes of $\tau$-measurable operators affiliated with a von {Neumann} algebra},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--91},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_1_a8/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Two classes of $\tau$-measurable operators affiliated with a von Neumann algebra
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 86
EP  - 91
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_1_a8/
LA  - ru
ID  - IVM_2017_1_a8
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Two classes of $\tau$-measurable operators affiliated with a von Neumann algebra
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 86-91
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_1_a8/
%G ru
%F IVM_2017_1_a8
A. M. Bikchentaev. Two classes of $\tau$-measurable operators affiliated with a von Neumann algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2017_1_a8/

[1] Segal I. E., “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl

[2] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl

[3] Yeadon F. J., “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Phil. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl

[4] Bikchentaev A. M., “O minimalnosti topologii skhodimosti po mere na konechnykh algebrakh fon Neimana”, Matem. zametki, 75:3 (2004), 342–349 | DOI | MR | Zbl

[5] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[6] Istrăţescu V., “On some hyponormal operators”, Pacific J. Math., 22:3 (1967), 413–417 | DOI | MR | Zbl

[7] Furuta T., “On the class of paranormal operators”, Proc. Japan Acad., 43:7 (1967), 594–598 | DOI | MR | Zbl

[8] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970

[9] Kubrusly C. S., Hilbert space operators. A problem solving approach, Birkhäuser Boston, Inc., Boston, MA, 2003 | MR | Zbl

[10] Bikchentaev A. M., “O normalnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k polukonechnoi algebre fon Neimana”, Matem. zametki, 96:3 (2014), 350–360 | DOI | Zbl

[11] Bikchentaev A. M., “Ob idempotentnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k algebre fon Neimana”, Matem. zametki, 100:4 (2016), 492–503 | DOI | MR

[12] Bikchentaev A. M., “Integrable products of measurable operators”, Lobachevskii J. Math., 37:4 (2016), 397–403 | DOI | MR | Zbl

[13] Stampfli J. G., “Hyponormal operators and spectral density”, Trans. Amer. Math. Soc., 117 (1965), 469–476 | DOI | MR | Zbl