Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversal-soft core
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 77-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the sandwich plates and shells with transversal-soft core and carrier layers having on the outer contour of the reinforcing rod, for small deformations, and middle displacements refined geometrically nonlinear theory is built, allowing to describe the process of the subcritical deformation and identify all possible buckling of carrier layers and reinforcing rods. It is based on the introduction as unknown contact forces at the points of interaction mating surface of the outer layers with filler and carrier layers and a core with reinforcing rods at all points of the surface of their conjugation to the shell contour. To derive the basic equations of equilibrium, static boundary conditions for the shell and reinforcing rods, as well as conditions of the kinematic coupling of the carrier layers with a core, the carrier layers and a core with reinforcing rods previously proposed a generalized Lagrange variational principle is used.
Keywords: sandwich plates and shells, side member, medium bending, refined beam and core models, contact stress
Mots-clés : transversal-soft core, Lagrange variational principle.
@article{IVM_2017_1_a7,
     author = {I. B. Badriev and M. V. Makarov and V. N. Paimushin},
     title = {Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversal-soft core},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {77--85},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_1_a7/}
}
TY  - JOUR
AU  - I. B. Badriev
AU  - M. V. Makarov
AU  - V. N. Paimushin
TI  - Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversal-soft core
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 77
EP  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_1_a7/
LA  - ru
ID  - IVM_2017_1_a7
ER  - 
%0 Journal Article
%A I. B. Badriev
%A M. V. Makarov
%A V. N. Paimushin
%T Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversal-soft core
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 77-85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_1_a7/
%G ru
%F IVM_2017_1_a7
I. B. Badriev; M. V. Makarov; V. N. Paimushin. Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversal-soft core. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2017), pp. 77-85. http://geodesic.mathdoc.fr/item/IVM_2017_1_a7/

[1] Bolotin V. V., Novichkov Yu. N., Mekhanika mnogosloinykh konstruktsii, Mashinostroenie, M., 1980

[2] Badriev I. B., Makarov M. V., Paimushin V. N., “Solvability of physically and geometrically nonlinear problem of the theory of sandwich plates with transversally-soft core”, Russian Mathematics, 59:10 (2015), 57–60 | DOI | MR | Zbl

[3] Badriev I. B., Garipova G. Z., Makarov M. V., Paimushin V. N., Khabibullin R. F., “Solving physically nonlinear equilibrium problems for sandwich plates with a transversally soft core”, Lobachevskii J. Math., 36:4 (2015), 474–481 | DOI | MR

[4] Badriev I. B., Makarov M. V., Paimushin V. N., “On the interaction of composite plate having a vibration-absorbing covering with incident acoustic wave”, Russian Mathematics, 59:3 (2015), 66–71 | DOI | MR

[5] Badriev I. B., Banderov V. V., Makarov M. V., Paimushin V. N., “Determination of stress-strain state of geometrically nonlinear sandwich plate”, Appl. Math. Sci., 9:77–80 (2015), 3887–3895 | DOI

[6] Badriev I. B., Banderov V. V., Garipova G. Z., Makarov M. V., Shagidullin R. R., “On the solvability of geometrically nonlinear problem of sandwich plate theory”, Appl. Math. Sci., 9:81–84 (2015), 4095–4102 | DOI

[7] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975

[8] Paimushin V. N., “Problemy geometricheskoi nelineinosti i ustoichivosti v mekhanike tonkikh obolochek i pryamolineinykh sterzhnei”, PMM, 71:5 (2007), 855–893 | MR

[9] Paimushin V. N., Polyakova N. V., “Neprotivorechivye uravneniya teorii ploskikh krivolineinykh sterzhnei pri konechnykh peremescheniyakh i linearizovannye zadachi ustoichivosti”, PMM, 73:2 (2009), 303–324 | MR | Zbl

[10] Paimushin V. N., Shalashilin V. I., “Neprotivorechivyi variant teorii deformatsii sploshnykh sred v kvadratichnom priblizhenii”, Dokl. RAN, 396:4 (2004), 492–495

[11] Paimushin V. N., Shalashilin V. I., “O sootnosheniyakh teorii deformatsii v kvadratichnom priblizhenii i problemy postroeniya utochnennykh variantov geometricheski nelineinoi teorii sloistykh elementov konstruktsii”, PMM, 69:5 (2005), 862–882 | MR

[12] Paimushin V. N., “Kontaktnaya postanovka nelineinykh zadach mekhaniki obolochek, soedinennykh po tortsevym secheniyam ploskim krivolineinym sterzhnem”, PMM, 78:1 (2014), 125–144 | Zbl

[13] Paimushin V. N., “K variatsionnym metodam resheniya prostranstvennykh zadach sopryazheniya deformiruemykh tel”, DAN SSSR, 273:5 (1983), 1083–1086 | MR | Zbl